
APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved O.A.25.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 25 – Merge and Mergesort

INTRODUCTION: In Lesson 23, we studied the quadratic sorting algorithms. We saw how the

number of steps required increased as an N2 factor when sorting N elements. In
the next two lessons we will study two recursive sorts, mergesort and quicksort,
which work by dividing lists in half. In this lesson, after solving a preliminary
merge problem, you will code a recursive mergesort.

The key topics for this lesson are:

A. A Non-Recursive Mergesort
B. A Merge Algorithm
C. Recursive Mergesort
D. Order of Recursive Mergesort

VOCABULARY: MERGE MERGESORT

DISCUSSION: A. A Non-Recursive Mergesort

1. The overall logic of mergesort is to "divide and conquer." A list of random
integers will be split into two or more equal-sized lists (each with the same
number of elements, plus or minus one), with each partial list or “sublist”
sorted independently of the other. The next step will be to merge the two
sorted sublists back into one big sorted list.

2. Here is a non-recursive mergeSort method. We divide the list into two

equal-sized parts and sort each with the selection sort, then merge the two
using an algorithm to be discussed in part B.

/* List A is unsorted, with A.length values in the array.
 first is the index position of the first value; last
 is the index position of the last value in the array;
 first < last.
 */
void mergeSort (int A[], int first, int last)
{
 int mid;

 mid = (first + last) / 2;
 selectionSort (A, first, mid);
 selectionSort (A, mid+1, last);
 merge (A, first, mid, last);
}

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved O.A.25.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

See Transparency
T.A.25.1, Example of
Mergesort.

3. A modified selection sort would have to be written to sort a range of values
in list A. Likewise, the merge method will also have to be modified to
internally merge two halves of the array into one ordered array.

4. The following example will illustrate the action of a non-recursive mergesort
on a list of 8 values:

34 23 48 37 3 1711 ... rest of list ...

Unsorted List

35

3423 48 373 1711 ... rest of list ...

List After Sorting Each Half

35

5. Merging the two halves of the array in the modified merge method will
require the use of a local temporary array. Because the two sublists are
stored within one array, the easiest approach is to merge the two sublists into
another array, then copy the temp array back to the original.

3423 48 373 1711 ... rest of list ...List A 35

3423 48373 1711 ... rest of list ...Temp 35

 Then copy Temp back into List A:

... rest of list ...List A

3423 48373 1711 ... rest of list ...Temp 35

3423 48373 1711 35

6. This version of merge will need to be able to work with sections of List A.

Here is a proposed method parameter list for merge:

/* will merge the two sorted sublists within A into
 one continuous sublist from A[first] .. A[last].
 The left list ranges from A[first]..A[mid]. The
 right list ranges from A[mid+1]..A[last].
 */

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved O.A.25.1 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

void merge (int A[], int first, int mid, int last)

7. You will need to write the code for this version of the merge method to
support a recursive mergesort. To assist you in that task, we next present a
non-recursive mergesort algorithm.

B. A Merge Algorithm

1. The mergesort algorithm requires a merge algorithm that we will solve first.

2. The method header and the specifications of the merge routine are given

below. You may assume the array definitions from the sorting template
program in Lesson 23 apply.

/* Preconditions: Lists A and B are sorted in nondecreasing
 order.
 Action: Lists A and B are merged into one list, C.
 Postcondition: List C contains all the values from
 Lists A and B, in nondecreasing order.
 */
void merge (int[] A, int[] B, int[] C)

3. The merge method breaks down into four cases:

a. List A is done, so pull a value from List B.

b. List B is done, so pull a value from List A.

c. Neither is done, and if List A[i] < List B[j] (where i & j are index

markers in lists A and B) then pull from List A.

d. Neither is done, and if List B[j] <= List A[i] then pull from List B.

4. It is important to deal with the four cases in the order described above. For
example, if you are done with List A (if i > A.length-1), you do not want
to inspect any values past A[i].

See T.A.25.2, Merging
Two Lists.

5. Example of method Merge:

A: 2 6 11 15 21

B: 4 5 9 13 17 25 29

C: 2 4 5 6 9 11 13 15 17 21 25 29

C. Recursive Mergesort

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved O.A.25.1 (Page 4)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

1. Instead of dividing the list once, a recursive mergesort will keep dividing the
list in half until the sublists are one or two values in length.

2. When developing a recursive solution, a key step is identifying the base case

of the solution. What situation will terminate the recursion? In this case, a
sublist of one or two values will be our two base cases.

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved O.A.25.1 (Page 5)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. Let's try and work through the recursive mergesort of a list of eight values.

16 91 4577 5 88 65 21

The list is divided into two sublists:

16 91 4577 5 88 65 21

Now let's work on the left sublist. It will be divided into lists of two.

16 91 4577

Each list of two is now very easy to sort. After each list of two is sorted, we
then merge these two lists back into a list of four.

16 91 45 7716 91 45 77

45 7716 9145

Now the algorithm proceeds to solve the right sublist (positions 5-8)
recursively. Then the two lists of four are merged back together.

5 88652145 7716 9145

Right Sublist

Recursive Work

5 16 21 45 65 77 88 91

Now we merge
the two sublists

of four

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved O.A.25.1 (Page 6)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

D. Order of Recursive Mergesort

1. Suppose we have a list of 8 numbers. If we trace the migration of one value,

it will be a member of the following sizes of lists: eight, four, two. The
number of calls of mergesort needed to sort one value into its final resting
spot is log2N. If N = 8, then it will take three calls of the algorithm for one
value to find its final resting spot.

2. We must apply log2N steps to N elements in the list. The order of recursive

Mergesort is O(N * log2N) or O(N * log N).

3. What about the cost of merging the fragments of the list? The merge

algorithm is a linear one, so when combined with the Mergesort routine we
have a O (N * log N) + O(N), which remains in the category of an O(N * log
N) algorithm.

SUMMARY/
REVIEW:

The recursive mergesort produces a dramatic increase in efficiency in
comparison with the N2 order of the quadratic sorts. This concept of dividing the
problem in two is used in several other classic algorithms. Once again, recursion
makes it easier to define a problem and code the solution.

ASSIGNMENT: Lab Exercise L.A.25.1, Merge

Lab Exercise L.A.25.2, Mergesort (Recursive)

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved L.A.25.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Merge

Assignment:

1. As explained in the student outline, write a method to merge two sorted lists into one sorted list.

2. Add the code for your merge method to the provided merge template program, MergeTemplate.java.

Instructions:

1. The merge algorithm is prone to logic errors. The most common error is dealing with cases when you

have reached the end of one list or the other. You are to test these 6 different input scenarios:

 List A List B

 Quantity Largest Value Quantity Largest Value

Trial 1 20 100 40 100
Trial 2 40 100 20 100
Trial 3 20 100 40 50
Trial 4 20 50 40 100
Trial 5 40 50 20 100
Trial 6 40 100 20 50

2. Turn in your source code and the printed run output for trials 4 and 6. If possible, print only the merge

function source code.

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved L.A.25.2 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Mergesort (Recursive)

Assignment:

1. Using the merge program in lab exercise L.A.25.1, Merge, as a starting point, write a recursive

mergeSort method as described in the student outline. Pseudocode for the recursive mergeSort
method is given below.

void mergeSort(int[] a, int first, int last)
// Recursively divides a list in half, over and over. When the
// sublist has one or two values, stop subdividing.
{
 if (sublist has only one value)
 do nothing
 else if (sublist has two values)
 sort it if necessary
 else // recursion, divide list into two halves
 Find midpoint of current sublist
 Call mergeSort and process left sublist
 Call mergeSort and process right sublist
 merge left and right sublists
}

2. You will have to modify the merge method to fit the necessary calls of the mergeSort method.

Instructions:

1. After confirming that your mergesort works, paste the necessary routines into your sorting template

program and count the number of steps for a recursive mergesort. Record the number of steps on the
worksheet from Lesson 23, Worksheet W.A.23.1, Comparison of Sorting Algorithms .

2. Turn in your source code and a printed run output of 100 numbers, sized from 1-200. If possible, print

only merge and mergeSort methods.

