
APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 1) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

STUDENT OUTLINE 
 

Lesson 30 – Linked Lists 
 

 
INTRODUCTION: In this lesson you begin to study a new data structure, the linked list, which is used 

to implement a list of elements arranged in some kind of order.  The linked list 
structure uses memory that shrinks and grows as needed but not in the same way 
as arrays. The discussion of linked lists includes the specification and 
implementation of a node class, which incorporates the fundamental notion of a 
single element of a linked list. 

 
The key topics for this lesson are: 

 
A. Declarations for a Linked List 
B. Methods for Manipulating Nodes 
C. Implementing Linked Lists 
D. Traversing a Linked List 
E. Pitfalls of Linked Data Structures 

 
 
VOCABULARY: NODE LINKED LIST 
 TRAVERSE NODE  
 NULL REFERENCE  
 
 
DISCUSSION: A. Declarations for a Linked List 

 
1. A linked list is a sequence of elements arranged one after another, with each 

element connected to the next element by a “link.” The link to the next 
element is combined with each element in a component called a node. A 
node is represented pictorially as a box with an element written inside of the 
box and a link drawn as an arrow and used to connect one node to another. 

 
 15 4 -3 12 1 

 
 

Figure 30-1 
 
In addition to connecting two nodes, the links also place the nodes in a 
particular order. In Figure 30-1 above, the five nodes form a chain with the 
first node linked to the second; the second node linked to the third node; and 
so on until the last node is reached. The last node is a special case since it is 
not linked to another node and is indicated with a diagonal line. 

 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 2) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

 
 

2. Each node contains two pieces of information: an element and a reference to 
another node. This can be implemented as a Java class for a node using an 
instance variable to hold the element, and a second instance variable that is a 
reference to another node as follows: 
 
public class ListNode 
{ 
  private Object value;   // the element stored in this node 
  private ListNode next;  // reference to next node in List 
  ... 
} 
 

3. The declaration seems circular and in some ways it is, but the compiler will 
allow such definitions.  A ListNode will have two data members, an 
Object and a reference to another ListNode.  The instance variable next 
will point to the next ListNode in a linked list. 

 
4. The ListNode class is constructed so that the elements of a list are objects 

(i.e., have the Object data type). Since any class extends Object, you can 
put any kind of object into a list, including arrays and strings. 

 
5. Whenever a program builds and manipulates a linked list, the nodes are 

accessed through one or more references to nodes. Typically, a program 
includes a reference to the first node (first) and a reference to the last 
node (last). 
 
ListNode first; 
ListNode last; 
 

 A program can proceed to create a linked list as shown below. The first 
and last reference variables provide access to the first and last nodes of the 
list 
 

 13 17 23 

first last 

 
 

Figure 30-2 
 

6. Figure 30-2 illustrates a linked list with a reference to the first node that 
terminates at the final node (indicated by a diagonal line in the reference field 
of the last node). Instead of a reference to another node, the final node 
contains a null reference, which is a special Java constant. The null 
reference can be used for any reference variable that has nothing to refer to. 
There are several common situations where the null reference is used: 
 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 3) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

a. When a reference variable is first declared and there is not yet an object 
for it to refer to, it can be given an initial value of the null reference. 

 
b. The null reference occurs in the link part of the final node of a linked list. 
c. When a linked list does not yet have any nodes, the null reference is used 

for the first and last reference variables to indicate an empty list. 
 

In a program, the null reference is written as the keyword null. 
 
 

B. Methods for Manipulating Nodes 
 

See, ListNode.java
* 1. Methods for the ListNode class will consist of those for creating, accessing, 

and modifying nodes  
 
2. The constructor for the ListNode class is responsible for creating a node 

and initializing the two instance variables of a new node. The node’s 
constructor has two arguments, which are the initial values for the node’s 
data and link variables. The constructor’s implementation copies its two 
parameters to the instance variables, value and next: 
 
public ListNode(Object initValue, ListNode initNext) 
// post: constructs a new element with object initValue, 
//       followed by next element 
{ 
  value = initValue; 
  next = initNext; 
} 
 

3. As an example, the constructor can be used by a program to create the first 
node of a linked list. 
 
ListNode first; 
first = new ListNode(new Integer(23), null); 
 
After execution of the two statements, first refers to the header node of a 
small linked list that contains just one node with the Integer 23. 

 
 23 

null 
first 

 
 

Since primitive data types (int, double, boolean, etc.), are not objects, it is 
necessary to convert them to objects using the appropriate wrapper class 
(Integer for int, Double for double, etc.) to construct a list. 

 

 
* Adapted from the College Board’s AP Computer Science AB: Implementation Classes and Interfaces. 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 4) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

 
 
 
 
 
 

4. Getting and setting the data and link of the node is accomplished with an 
accessor method and a modification method for each of its instance variables 
as follows: 
 
public Object getValue() 
// post: returns value associated with this element 
{ 
  return value; 
} 
 
public ListNode getNext() 
// post: returns reference to next value in list 
{ 
  return next; 
} 
 
public void setValue(Object theNewValue) 
{ 
  value = theNewValue; 
} 
 
public void setNext(ListNode theNewNext) 
// post: sets reference to new next value 
{ 
  next = theNewNext; 
} 
 

5. The following short program using ListNode will illustrate the syntax of 
accessing the data members of a ListNode. 
 
public static void main(String[] args) 
{ 
  ListNode list; 
 
  list = new ListNode(new Integer(13), null); 
 
  System.out.println("The node contains: " + 
                     (Integer)list.getValue()); 
 
  list.setValue(new Integer(17)); 
  System.out.println("The node contains: " + 
                     (Integer)list.getValue()); 
} 
 
Run Output: 
 
The node contains: 13 
The node contains: 17 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 5) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

 
 

C. Implementing Linked Lists 
 
See ListDemo.java and 
SinglyLinkedList.java 

1. In this section, we will look at the implementation of a linked list of ListNode 
objects. This class encapsulates the list operations that maintain the links as 
the list is modified. To keep the class simple, we will implement only a singly 
linked list, and the list class will supply direct access only to the first list 
element. 
 
 
 
 

2. The SinglyLinkedList class holds a reference first to the first 
ListNode (or null, if the list is completely empty).  Access to the first node 
is provided by the getFirst method. If the list is empty, a 
NoSuchElementException is thrown (see Lesson 17, Exceptions). 
 
class SinglyLinkedList 
{ 
  private ListNode first; 
 
  public SinglyLinkedList() 
  { 
    first = null; 
  } 
 
  public Object getFirst() 
  { 
    if (first == null) 
    { 
      throw new NoSuchElementException(); 
    } 
    else 
      return first.getValue(); 
  } 
}  
 

3. Additional nodes are added to the head of the list with the addFirst method. 
When a new link is added to the list, it becomes the head of the list, and the 
link that the old list had becomes the next link: 
 
class SinglyLinkedList 
{ 
  ... 
  public void addFirst(Object value) 
  { 
    first = new ListNode(value, first); 
  } 
  ... 
}  
 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 6) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

4. The statement  ListNode(value, first) invokes the constructor.  The 
line of code 
 
first = new ListNode(value, first); 
 

 is broken down as follows: 
a. The new command allocates enough memory to store a ListNode. 
b. The new ListNode will be assigned the values of value and first. 
c. The address of this newly constructed ListNode is assigned to first. 
d. It is important to understand the old and new values of first: 
 

 

 first = new ListNode(value, first);  

new value of first  old value of first  

 
5. When value = 1, first = null.  A new node is constructed with the 

values 1 and null.  first points to this new node.  In a sense, the 
constructor provides a new node between the variable first and the node 
that first formerly referenced. 

  
 first null 

first = new ListNode(value, first); 

1  

null 

first 

 

before the call of the constructor 
 
call the constructor, first is 
passed as a null value 
 
first is changed, references the 
newly constructed node 
 

 
6. When value = 2, first is already pointing to the first node of the linked list.  

When the constructor is called, the new node is constructed and placed 
between first and the node first used to point to. 
 

 

 

first = new ListNode(value, first); 

1  first 

1  

null 

2  

null 

first 

 
 The value of first passed to the ListNode constructor is used to initialize 

the next field of the new node. 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 7) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

 
 

D. Traversing a Linked List - Method printList 
 
1. To traverse a list means to start at one end and visit all the nodes, solving a 

problem along the way.  In the case of method printList, the task is to 
print the value field from each node.   
 
class SinglyLinkedList 
{ 
  ... 
  public void printList() 
  { 
    ListNode temp = first;    // start from the first node 
    while (temp != null) 
    { 
      System.out.print(temp.getValue() + " "); 
      temp = temp.getNext();  // go to next node 
    } 
  } 
  ... 
} 
 
a. Because temp is an alias to first, we can use it to traverse the list 

without altering the reference to the start of the list.  The ListNode 
variable, temp, will contain null when we are done. 

 
b. Until temp equals null, the while loop will do two steps at each node; 

print the data field, then advance the temp reference. 
 
c. The statement, temp = temp.getNext(), is a very important one as 

this is how we move to the next node.  
 

2. Another common list traversal problem is counting the number of nodes in the 
list.  The lab exercise will ask you to solve this problem. 

 
 
E. Pitfalls of Linked Data Structures 

 
1. A linked list must end with a null value.  Without such a marker at the end 

of the list, a routine cannot “see” the end of the data structure.  This 
assignment of a null value at the end of the list is often taken care of when 
a new node is packaged or through the use of a constructor. 

 
2. When a reference variable is null, it is a programming error to invoke one of 

its methods or to try to access one of its instance variables. For example, a 
program may maintain a reference to the first node of a linked list, as follows: 
 
ListNode first; 
 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved O.A.30.1 (Page 8) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

Initially, the list is empty and first is the null reference. At this point, it is a 
programming error to invoke one of the ListNode’s methods. The error 
would occur as a NullPointerException. 

 
 
SUMMARY/ 
REVIEW: 

You have just been taught your first dynamic data structure, a linked list.  The 
concept of indirection makes dealing with references a bit more difficult, but 
careful reading and lots of diagrams will help.  Following a working program is a 
good start; but only by writing code will you develop proficiency with lists.  The 
lab exercises for the next few lessons will enhance your understanding of linked 
lists. 

 
 
ASSIGNMENT: Lab Exercise L.A.30.1, List1 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved L.A.30.1 (Page 1) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

LAB EXERCISE 
 

List1 
 
Background: 
 
1. The student outline contains a program that stored a linked list of five nodes, but in reverse order.  The 

objective of this lab exercise is to create a linked list with the nodes assembled in order as they are 
generated.  If a loop is used to create the values 1-5, the resulting list should look like this: 

 
 

data 

next 

1  
data 

next 

2  
data 

next 

3  
data 

next 

4  
data 

5  first  

last 

 
 

The next value to be inserted would go at the right end of the list.  To avoid traversing the entire list 
each time, two references will provide access at the front (first = left end) and the end (last = right 
end) of the list. 

 
2. Your lab work can begin with the example programs from ListDemo.java, SinglyLinkedList.java, 

and ListNode.java. 
 
3. An additional instance variable, last, should be added to the SinglyLinkedList class (found in 

SinglyLinkedList.java) to supply direct access to the last node in the list. The constructor should also 
be modified to initialize the variable. 

 
4. Create an addLast method to create and add a ListNode (found in ListNode.java)to the end of the 

list. The method will have to deal with several cases this time, an empty list case and a general case.  
A two case solution is required because the links are different for each case.  The following 
code/pseudocode is provided: 

 
void addLast(Object value) 
// Takes in value, creates a new node, adds the new node 
// at the end of the list. 
{ 
  if an empty list then 
   set both first and last to reference the newly constructed node 
  else 
   construct a new node at the end of the list 
} 

 
5. Add a getLast method to return the last element of the list. 
 
6. Add a size method that returns a count of the number of nodes in the list 
 
7. Adjust the code in the other routines as needed. 



APCS - Java, Lesson 30 © ICT 2003, www.ict.org, All Rights Reserved L.A.30.1 (Page 2) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

 
 
Assignment: 
 
1. Using the guidelines in the Background section above, code a linked list that stores the 20 integers 

from 1-20 in ascending order. 
 
2. After the list is created, call getLast display the contents of the last node to the screen. 
 
3. Call printList to traverse the list and print out the 20 numbers in one line on the screen. 
 
4. Use the size method to display the number of nodes in the list. 
 
 
Instructions: 
 
1. Turn in your source code and a printed run output. 
 
2. The run output will consist of the value of the first node in the list, the value of the last node in the list, 

20 numbers and a count of how many nodes are in the list. An example run output is shown below: 
 

First Element: 1 
Last Element: 20 
SinglyLinkedList: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Nodes: 20 


