INTRODUCTION:

VOCABULARY:

DISCUSSION:

APCS- Java, Lesson 25

STUDENT OUTLINE

Lesson 25 — Merge and Mergesort

In Lesson 23, we studied the quadratic sorting algorithms. We saw how the
number of steps required increased as an N2 factor when sorting N elements. In
the next two lessons we will study two recursive sorts, mergesort and quicksort,
which work by dividing ligsin haf. Inthislesson, after solving a preiminary
merge problem, you will code a recursive mergesort.

The key topics for thislesson are:
A. A Non-Recursive Mergesort
B. A Merge Algorithm

C. Recursive Mergesort

D. Order of Recursive Mergesort

MERGE MERGESORT

A. A Non-Recursive Mergesort

1. Theoverdl logic of mergesort isto "divide and conquer.” A list of random
integers will be split into two or more equal-sized lists (each with the same
number of elements, plus or minus one), with each partia list or “sublist”
sorted independently of the other. The next step will be to merge the two
sorted sublists back into one big sorted list.

2. Hereisanon-recursive mer geSort method. We divide the list into two
equal-sized parts and sort each with the selection sort, then merge the two
using an agorithm to be discussed in part B.

/* List Ais unsorted, with A length values in the array.
first is the index position of the first value; I|ast
is the index position of the last value in the array;
first < last.

*/

void nmergeSort (int A[], int first, int last)

{

int md;

md = (first + last) / 2;

sel ectionSort (A, first, md);
sel ectionSort (A, md+l, last);
merge (A, first, md, last);

© ICT 2003, www.ict.org, All Rights Reserved 0.A.251 (Page 1)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

See Transparency 3. A modified selection sort would have to be written to sort arange of values
T.A.25.1, Example of inlig A. Likewise, the mer ge method will aso have to be modified to
Mergesort. internally merge two haves of the array into one ordered array.

4. Thefollowing example will illustrate the action of a non-recursive mergesort
on alist of 8 values:

Unsorted List

34(23(48|35|37| 3|11|17| ...restof list ...

List After Sorting Each Half

23|34|35|48| 3(11(17|37] ...restof list ...

5. Merging the two halves of the array in the modified mer ge method will
require the use of alocal temporary array. Because the two sublists are
stored within one array, the easiest approach is to merge the two sublistsinto
another array, then copy the temp array back to the original.

List A | 23| 34| 35| 48| 3|11|17|37| ... rest of list ...

S

Temp 3(11| 17| 23| 34| 35(37|48| ...rest of list ...

Then copy Tenp back into List A:

List A | 3| 11| 17| 23| 34| 35| 37| 48] ... rest of list ...
A A A A A A A A

Temp | 3|11|17|23|34|35|37|48] ... rest of list ...

6. Thisversion of mer ge will need to be able to work with sections of List A.
Here is a proposed method parameter list for mer ge:

/* will nmerge the two sorted sublists within Ainto
one continuous sublist fromAfirst] .. Alast].
The left list ranges fromAfirst]..AAmd]. The
right list ranges from A mid+1]..Allast].

*/

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved 0.A.25.1 (Page 2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

void nerge (int Al], int first, int nmd, int |ast)

7. You will need to write the code for this version of the mer ge method to
support arecursive mergesort. To assist you in that task, we next present a
non-recursive mergesort algorithm.

B. A Merge Algorithm

1. The mergesort agorithm requires a merge algorithm that we will solve first.

2. Themethod header and the specifications of the merge routine are given
below. You may assume the array definitions from the sorting template
program in Lesson 23 apply.

/* Preconditions: Lists A and B are sorted in nondecreasing
or der.
Action: Lists Aand B are nerged into one list, C
Postcondition: List Ccontains all the values from
Lists A and B, in nondecreasing order.
*/
void merge (int[] A int[] B int[] ©

3. Themer ge method breaks down into four cases:
a ListAisdone, so pull avauefrom List B.
b. List Bisdone sopull avauefrom List A.

c. Netherisdone andif LissAli] <ListB[j] (wherei & areindex
markersin lists A and B) then pull from List A.

d. Neitherisdone andif ListB[j] <= List A[i] thenpull fromList B.
4. Itisimportant to deal with the four casesin the order described above. For
example, if you are donewith List A (ifi > A. | engt h- 1), you do not want

to inspect any values past A[i | .

See T.A.25.2, Merging 5. Example of method Merge:

Two Ligts.
A: 26111521
B: 459131725 29
C. 2456911131517 21 25 29
C. Recursive Mergesort
APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved 0.A.25.1 (Page 3)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

1. Ingtead of dividing the list once, a recursive mergesort will keep dividing the
list in half until the sublists are one or two vauesin length.

2. When developing arecursive solution, a key step is identifying the base case
of the solution. What situation will terminate the recursion? In this case, a
sublist of one or two values will be our two base cases.

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved 0.A.25.1 (Page 4)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 25

3. Let'stry and work through the recursive mergesort of alist of eight values.

16 | 91 | 77 | 45 5 8 | 65 |21
Thelist is divided into two sublists:
16 | 91 | 77 | 45 5 88 | 65 | 21

Now let's work on the left sublist. 1t will be divided into lists of two.

16

91

77

45

Each list of two isnow very easy to sort. After each list of two is sorted, we

then merge these two lists back into alist of four.

16

91

45

77

N

16

45

77 | 91

Now the agorithm proceeds to solve the right sublist (positions 5-8)
recursively. Then the two lists of four are merged back together.

Right Sublist
Recursive Work
16 |45 |77 | 91 5 (21 | 65 | 88
Now we merge
the two sublists
of four
16 | 21 |45 | 65 | 77 | 88 | 91

© ICT 2003, www.ict.org, All Rights Reserved

Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

0.A.25.1 (Page5)

SUMMARY/
REVIEW:

ASSIGNMENT:

APCS- Java, Lesson 25

D.

Order of Recursive Mergesort

Suppose we have alist of 8 numbers. If we trace the migration of one value,
it will be amember of the following sizes of lists: eight, four, two. The
number of calls of mergesort needed to sort one value into its final resting
oot islogyN. 1f N = 8, then it will take three calls of the agorithm for one
vaueto find its final resting spot.

We must apply logyN stepsto N elementsin the list. The order of recursive
Mergesort is O(N * logoN) or O(N * log N).

What about the cost of merging the fragments of the list? The merge
agorithmisalinear one, so when combined with the Mergesort routine we
have aO (N * log N) + O(N), which remainsin the category of an O(N * log
N) agorithm.

The recursive mergesort produces a dramatic increase in efficiency in
comparison with the N2 order of the quadratic sorts. This concept of dividing the
problem in two is used in several other classic agorithms. Once again, recursion
makes it easier to define a problem and code the solution.

Lab Exercise L.A.25.1, Merge
Lab Exercise L.A.25.2, Mergesort (Recursive)

© ICT 2003, www.ict.org, All Rights Reserved 0.A.25.1 (Page 6)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Merge

Assignment:

1. Asexplained in the student outline, write a method to merge two sorted lists into one sorted list.

2. Add the code for your merge method to the provided merge template program, MergeTemplate.java.

I nstructions:

1. The merge agorithm is proneto logic errors. The most common error is dealing with cases when you
have reached the end of one list or the other. You are to test these 6 different input scenarios:

List A ListB
Quantity Largest Vaue Quantity Largest Value
Tria 1 20 100 40 100
Trid 2 40 100 20 100
Trid 3 20 100 40 50
Trial 4 20 50 40 100
Trid 5 40 50 20 100
Trid 6 40 100 20 50

2. Turninyour source code and the printed run output for trials 4 and 6. If possible, print only the merge
function source code.

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved L.A.25.1 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Mergesort (Recursive)

Assignment:

1. Using the merge program in lab exercise L.A.25.1, Mer ge, as a starting point, write arecursive
mer geSor t method as described in the student outline. Pseudocode for the recursive nmer geSor t
method is given below.

void nmergeSort(int[] a, int first, int |ast)
/1 Recursively divides a list in half, over and over. Wen the
/1 sublist has one or two val ues, stop subdividing.
{
if (sublist has only one val ue)
do not hi ng
else if (sublist has two val ues)
sort it if necessary
el se /1 recursion, divide list into two hal ves
Find m dpoint of current subli st
Call nergeSort and process |left sublist
Cal |l nergeSort and process right sublist
merge | eft and right sublists

}

2. You will have to modify the mer ge method to fit the necessary calls of the mer geSor t method.

I nstructions;

1. After confirming that your mergesort works, paste the necessary routines into your sorting template
program and count the number of steps for arecursive mergesort. Record the number of steps on the
worksheet from Lesson 23, Worksheet W.A.23.1, Comparison of Sorting Algorithms.

2. Turninyour source code and a printed run output of 100 numbers, sized from 1-200. If possible, print
only mer ge and mer geSor t methods.

APCS - Java, Lesson 25 © ICT 2003, www.ict.org, All Rights Reserved L.A.25.2 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

