
APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved O.A.20.1 (Page 1) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

STUDENT OUTLINE  
 

Lesson 20 – ArrayList 
 
INTRODUCTION: It is very common for a program to manipulate data that is kept in a list. You have 

already seen how this is done using arrays. Arrays are a fundamental feature of 
Java and of most programming languages. But because lists are so useful, the 
Java Development Kit includes the ArrayList class, which works much like an 
array but has additional methods and features. 

 
The key topics for this lesson are: 

 
A. Array Implementation of a list 
B. The ArrayList Class 
C. Object Casts 
D. The Wrapper Classes 

 
VOCABULARY: ABSTRACT DATA TYPE LIST 
 ArrayList CAST 
 WRAPPER  
 
DISCUSSION: A. Array Implementation of a list 

 
1. A data structure combines data organization with methods of accessing and 

manipulating the data. For example, an array becomes a data structure for 
storing a list of elements when we provide methods to find, insert, and remove 
an element. At a very abstract level, we can think of a general “list” object: a 
list contains a number of elements arranged in sequence; we can find a target 
value in a list, add elements to the list, and remove elements from the list. 

 
2. An abstract description of a data structure, with the emphasis on its 

properties, functionality, and use, rather than on a particular implementation, is 
referred to as an Abstract Data Type (ADT). An ADT defines methods for 
handling an abstract data organization without the details of implementation. 

 
3. A “List” ADT, for example, may be described as follows: 

 
Data organization: 
– Contains a number of data elements arranged in a linear sequence 
 
Methods: 
– Create an empty List 
– Append an element to List 
– Remove the i-th element from List 
– Obtain the value of the i-th element 
– Traverse List (process or print out all elements in sequence, visiting each 

element once) 



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved O.A.20.1 (Page 2) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

 
4. A one-dimensional Java array already provides most of the functionality of a 

list. When we want to use an array as a list, we create an array that can hold 
a certain maximum number of elements; we then keep track of the actual 
number of values stored in the array. The array’s length becomes its 
maximum capacity and the number of elements currently stored in the array 
is the size of the list. 

 
5. However, Java arrays are not resizable. If we want to be able to add 

elements to the list without worrying about exceeding its maximum capacity, 
we must use a class with an add method, which allocates a bigger array and 
copies the list values into the new array when the list runs out of space. 
That’s what the ArrayList class does. 

 
6. The ArrayList class builds upon the capabilities of arrays. An ArrayList 

object contains an array of object references plus many methods for 
managing that array. The biggest convenience of an ArrayList is that you 
can keep adding elements to it no matter what size it was originally. The size 
of the ArrayList will automatically increase and no information will be lost. 

 
7. However, this convenience comes at a price:  
 

a. The elements of an ArrayList are object references, not primitive data 
like int or double.  

 
b. Using an ArrayList is slightly slower than using an array directly.  This 

would be important for very large data processing projects. 
 
c. The elements of an ArrayList are references to Object. This means 

that often you will need to use type casting with the data from an 
ArrayList.  “Type Casting” means to change the type of an object in 
order to conform to another use.  See Part C, Object Casts, below. 

 
 
B. The ArrayList Class 
 
1. To declare a reference variable for an ArrayList, do this:  

 
// myArrayList is a reference to a future ArrayList object 
ArrayList myArrayList;    

 
You do not say what type of object you are intending to store. An 
ArrayList is like an array of references to Object. This means that any 
object reference can be stored in an ArrayList. To declare a variable and 
to construct an ArrayList with an unspecified initial capacity do this:  
 
// myArrayList is a reference to an ArrayList object. The 
// Java system picks the initial capacity. 
ArrayList myArrayList = new ArrayList();  



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved O.A.20.1 (Page 3) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

 
This may not be very efficient. If you have an idea of what size ArrayList 
you need, start your ArrayList with that capacity. To declare a variable and 
to construct an ArrayList with an initial capacity of 15, do this:  
 
// myVector is a reference to an ArrayList object with an 
// initial capacity of 15 elements. 
ArrayList myArrayList = new ArrayList (15);                                        

 
2. The elements of an ArrayList are accessed using an integer index. As with 

arrays, the index is an integer value that starts at 0. 
– For retrieving data from an ArrayList the index is 0 to size-1.  
– For setting data in an ArrayList the index is 0 to size-1.  
– For inserting data into an ArrayList the index is 0 to size. When you 

insert data at index size, you are adding data to the end of the 
ArrayList. 

 
3. To add an element to the end of an ArrayList use:  
 

// add a reference to an Object to the end of the 
// ArrayList, increasing its size by one 
boolean add(Object obj);   

 
Here is an example program. To use the ArrayList you must import the 
java.util package: 

 
Program 20 – 1 
 
import java.util.* ; 
 
class NameList 
{ 
  public static void main(String[] args) 
  { 
    ArrayList names = new ArrayList(10); 
     
    names.add("Cary"); 
    names.add("Chris"); 
    names.add("Sandy"); 
    names.add("Elaine"); 
 
    // remove the last element from the list 
    //  note – remove returns an object which must be "cast" to 
    //  a String before assignment. Explained in next section 
    String lastOne = (String)names.remove(names.size()-1); 
    System.out.println("removed: " + lastOne);     
    names.add(2, "Alyce"); // add a name at index 2 
     
    for (int j = 0; j < names.size(); j++) 
      System.out.println( j + ": " + names.get(j));  
  } 
} 
 



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved O.A.20.1 (Page 4) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

Run Output: 
 
removed: Elaine 
0: Cary 
1: Chris 
2: Alyce 
3: Sandy 

 
4. The add() method adds to the end of an ArrayList. To set the data at a 

particular index use:  
 
// replaces the element at index with objectReference 
Object set(int index, Object obj) 
 
The index should be within 0 to size-1. The data previously at index is 
replaced with obj. The element previously at the specified position is 
returned. 
 

5. To access the object at a particular index use:  
 
// Returns the value of the element at index 
Object get(int index) 
 
The index should be 0 to size-1. 

 
6. Removing an element from a list: The ArrayList class has a method that 

will do this without leaving a hole in place of the deleted element:  
 

// Removes the element at index from thelist and returns 
// its old value; decrements the indices of the subsequent 
// elements by 1 
Object remove(int index); 

 
The element at location index will be eliminated. Elements at locations 
index+1, index+2, …, size()-1 will each be moved down one to fill in 
the gap. 

 
7. Inserting an element into an ArrayList at a particular index: When an 

element is inserted at index the element previously at index is moved up 
to index+1, and so on until the element previously at size()-1 is moved up 
to size(). The size of the ArrayList has now increased by one, and the 
capacity can be increased again if necessary.  

 
// Inserts obj before the i-th element; increments the 
// indices of the subsequent elements by 1 
void add(int index, Object obj); 
    
Inserting is different from setting an element. When set(index, obj) is 
used, the object reference previously at index is replaced by the new obj. 
No other elements are affected, and the size does not change. 

 



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved O.A.20.1 (Page 5) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

 
 
 
 
 
 
 
 
 
 

C. Object Casts 
 
1. One of the difficulties with building array lists with Object for the item type 

is that methods for returning the items of the array list return things of type 
Object, instead of the actual item type.  

 
2. For example, consider the following: 

 
ArrayList aList = new ArrayList(); 
aList.add("Chris"); 
String nameString = aList.get(0); // THIS IS A SYNTAX ERROR! 
System.out.println("Name is " + nameString); 
 
This code creates an ArrayList called aList and adds to the list the single 
String object "Chris". The intent of the third instruction is to assign the 
item "Chris" to nameString. The state of program execution following the 
add is that aList stores the single item, "Chris". Unfortunately, this code 
will never execute, because of a syntax error with the statement: 
 
String nameString = aList.get(0); // THIS IS A SYNTAX ERROR! 
 
The problem is a type conformance issue. The get method returns an 
Object, and an Object does not conform to a String (even though this 
particular item happens to be a String). 
 

3. The erroneous instruction can be modified to work as expected by 
incorporating the (String) cast shown below.  
 
String nameString = (String)aList.get(0); 
 

 
D. Wrapper Classes 
 
1. Because numbers are not objects in Java, you cannot insert them directly into 

array lists. To store sequences of integers, floating-point numbers, or 
boolean values in an array list, you must use wrapper classes. 

  
2. The classes Integer, Double, and Boolean wrap number and truth values 

inside objects. These wrapper objects can be stored inside array lists. 



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved O.A.20.1 (Page 6) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

 
3. The Double class is a typical number wrapper. There is a constructor that 

makes a Double object out of a double value: 
 
Double r = new Double(8.2057); 
 
Conversely, the doubleValue method retrieves the double value that is 
stored inside the Double object 
 
Double d = r.doubleValue(); 

 
 
 

4. To add a primitive data type to an array list, you must first construct a 
wrapper object and then add the object. For example, the following code adds 
a floating-point number to an ArrayList: 
 
ArrayList grades = new ArrayList(); 
double testScore = 93.45; 
Double wrapper = new Double(testScore); 
grades.add(wrapper); 
 
To retrieve the number, you need to cast the return value of the get method 
to Double, and then call the doubleValue method: 
 
Double wrapper = (Double)grades.get(0); 
double testScore = wrapper.doubleValue(); 
 

5. The ArrayList class contains an Object[] array to hold a sequence of 
objects. When the array runs out of space, the ArrayList class allocates a 
larger array. 

 
 
SUMMARY/ 
REVIEW: 

Like an array, an ArrayList contains elements that are accessed using an 
integer index. However, unlike an array, the size of an ArrayList will expand if 
needed as items are added to it. As these examples show, ArrayList can be 
very useful. The package java.util also includes a few other classes for 
working with objects. We'll look at some of them in later lessons. 

 
 
ASSIGNMENT: Lab Exercise L.A.20.1, IrregularPolygon 

Lab Exercise L.A.20.2, Permutations 
 



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved L.A.20.1 (Page 1) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

LAB EXERCISE 
 

Irregular Polygon 
 
 
Background: 
 
Polygons are closed two-dimensional shapes bounded by line segments. The segments meet in pairs at 
corners called vertices. A polygon is irregular if not all its sides are equal in length.   The figure below 
shows examples of irregular polygons:  
 
 
 
 
 
 
 
 

 
(source: Intermath Dictionary, http://www.intermath-uga.gatech.edu/dictnary/descript.asp?termID=186): 

 
Assignment: 
 
1. Implement a class IrregularPolygon that contains an array list of Point2D.Double objects. 
 
2. The Point2D.Double class defines a point specified in double precision representing a location in (x, 

y) coordinate space. For example, Point2D.Double(2.5, 3.1) constructs and initializes a point at 
coordinates (2.5, 3.1). Details can be found at: 

 
http://java.sun.com/j2se/1.4.1/docs/api/java/awt/geom/Point2D.Double.html 

 
3. Use the following declarations as a starting point for your lab work. 
 

import java.awt.geom.*;  // for Point2D.Double 
import java.util.*;      // for ArrayList 
import apcslib.*;        // for DrawingTool  
 
class IregularPolygon 
{ 
   private ArrayList myPolygon; 
     
   // constructors 
   public IregularPolygon() {   } 
    
   // public methods 
   public void add(Point2D.Double aPoint) {   } 
 
   public void draw() {   } 
 
   public double perimeter() {   } 

 



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved L.A.20.1 (Page 2) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

 
   public double area() {   } 
} 

 
4. The program should use the Drawing Tool to draw the polygon by joining adjacent points with a line 

segment, and then closing it up by joining the end and start points. 
 
5. Write methods that compute the perimeter and the area of a polygon. To compute the perimeter, 

compute the distance between adjacent points, and total up the distances. The area of a polygon with 
corners ),(),...,,( 1100 −− nn yxyx  is the absolute value of: 

 

)......(
2
1

012110012110 xyxyxyyxyxyx nn −− −−−−+++  

 
Note: add n products, then subtract n products, then divide by 2.  The result will be negative or 
positive depending on the order in which the products are taken, i.e., which products are subtracted 
and which are added.   

 
6. As a test case, the parallelogram formed by the following coordinates has a perimeter of 17.41 units 

and an area of 1700 square units:  (20, 10), (70, 20), (50, 50), (0, 40).   



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved L.A.20.2 (Page 1) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

LAB EXERCISE 
 

Permutations 
 
 
 
Assignment: 
 
1. Write a program that produces random permutations of the numbers 1 to 10.  “Permutation” is a 

mathematical name for an arrangement.  For example, there are six permutations of the numbers 
1,2,3: 123, 132, 231, 213, 312, and 321. 

 
2. To generate a random permutation, you need to fill an ArrayList with the numbers 1 to 10 so that no 

two entries of the array have the same contents. You could do it by brute force, by calling 
Random.nextInt() until it produces a value that is not yet in the array. Instead, you should 
implement a smart method. Make a second ArrayList and fill it with the numbers 1 to 10. Then pick 
one of those at random, remove it, and append it to the permutation ArrayList. Repeat ten times. 

 
3. Implement a class PermutationGenerator with the following method: 
 

ArrayList nextPermutation 
 
Instructions: 
 
1. Turn in your source code and a printed run output. 
 
2. The run output will consist of 10 lists of  random permutations of the number 1 to 10. Example  output 

is shown below: 
 
Random Permutation List Generator 
 
List  1:   4  6  8  1  9  7 10  5  3  2 
List  2:   6  8  1  7  3  4  9 10  5  2 
List  3:   2  4  9  6  8  1 10  5  7  3 
List  4:   8  5  4  3  2  9  6  7  1 10 
List  5:  10  3  2  6  8  9  5  7  4  1 
List  6:   9 10  3  2  1  5  6  8  4  7 
List  7:   3  8  5  9  4  2 10  1  6  7 
List  8:   3  2  4  5  7  6  9  8 10  1 
List  9:   4  1  5 10  8  3  6  2  7  9 
List 10:   3  5  2  4  1  7  9  6  8 10 



APCS - Java, Lesson 20 © ICT 2003, www.ict.org, All Rights Reserved H.A.20.1 (Page 1) 
Use permitted only by licensees in accordance 

with license terms (http://www.ict.org/javalicense.pdf) 

ArrayList Methods 
 
 
 
int size();                    // Returns the number of elements 
                               // currently stored in the list 
 
boolean isEmpty();             // Returns true if the list is empty, 
                               // otherwise returns false 
 
boolean add(Object obj);       // Appends obj at the end of the list; 
                               // returns true 
 
void add(int i, Object obj);   // Inserts obj before the i-th 
element; 
                               // increments the indices of the 
                               // subsequent elements by 1 
 
Object set(int i, Object obj); // Replaces the i-th element with obj; 
                               // returns the old value 
 
Object get(int i);             // Returns the value of the i-th 
                               // element 
 
Object remove(int i);          // Removes the i-th element from the 
                               // list and returns its old value; 
                               // decrements the indices of the 
                               // subsequent elements by 1 
 
 
Note: this is an incomplete list: see http://java.sun.com/j2se/1.4.1/docs/api/java/util/ArrayList.html for the 
entire list. 
 


