INTRODUCTION:

VOCABULARY:

DISCUSSION:

See Handout, H.A.26.1,
quickSort Method.

APCS - Java, Lesson 26

STUDENT OUTLINE
Lesson 26 — Quicksort

Quicksort is another recursive sorting algorithm that works by dividing lists in half.
Whereas mergesort divided lists in half and then sorts each sublist, quicksort will
roughly sort the entire list, and then split the list in half. The order of these two
sorts fals into the category O(N * log N), which was introduced in Lesson 25.
When the lists become large, either of these sorts will do an excellent job.

The key topics for thislesson are:

A. Quicksort
B. Order of Quicksort

QUICKSORT

A. Quicksort

1. Hereisthe overal strategy of quicksort:

a. Quicksort chooses an arbitrary value from somewherein thelist. A
common location is the middle value of the list.

b. This vaue becomes adecision point for roughly sorting the list into two
sublists, which we cdll the “left” and the “right” sublists. All the values
smaller than the dividing value are placed in the left sublist, while dl the
values greater than the dividing value are placed in the right sublist.

c. Each sublist isthen recursively sorted with quicksort.

d. Thetermination of quicksort occurs when alist of one value is obtained,
which by definition is sorted.

2. Thisisthe code for quicksort:

void quickSort (int[] list, int first, int |ast)

{
int g="first, h =1last;
int mdlindex = (first + last) / 2;
int dividingValue = I|ist[mdlndex];
do
{
while (list[g] < dividingValue) g++;
while (list[h] > dividingValue) h--;
if (g <=h)
{
[lswap(list[g], list[h]);
int tenp = list[g];
list[g] =list[h];
list[h] = tenp;
g++;
h--;
}
}
© ICT 2003, www.ict.org, All Rights Reserved 0.A.26.1 (Pagel)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



while (g < h);

if (h>first) quickSort (list,first,h);

if (g <last) quickSort (list,g,last);
}

APCS - Java, Lesson 26 ©2003, ICT 0.A.26.1 (Page 2)



See Transparency T.A.26.1,
Action of Quicksort.

APCS - Java, Lesson 26

. Suppose we have the following list of 9 unsorted valuesin an array:

7 22 34 28 19 8 11 92 1

The values received by the formal parameter | i st inthefirst cal of
qui cksort areareferenceto an array, and the first and last cells of the
array, 0 and 8. Variablefi r st isinitidized with thevaue 0, and | ast
isinitidized with the vaue 8.

Theni dI ndex valueis caculated as (0+8) / 2, which equals 4.
Thedi vi di ngVal ue isthevadueinlocation4, | i st[4] = 19.

The vaue of 19 will be our decision point for sorting values into two ligts.
Theligt to the left will contain al the values less than or equd to 19. The
list to the right will contain the values larger than 19. Or smply put, small
vaues go to the left and large values go to the right.

The identifiers g and h will beindicesto locationsin thelist. Thewhi | e
loops will move g and h until avaueisfound to be on the wrong side of
the dividing vaue of 19. The g index isinitialized with the vaue of
first andtheh index isinitidized with thevdue of | ast .

The g index starts a position O and moves until it “sees’ that 22 is on the
wrong side. Index g stops at location 1.

The h index starts at position 8. Immediately it “sees’ that the value 1 is
on thewrong side. Index h never moves and stays at position 8 of the

array.

Sinceg <= h(1<=8),thevaluesinlist[1] andlist[8] are
swapped. After the values are swapped, index g moves one position to
the right and index h moves one position to the lft.

The values of thepointersarenow: g = 2,h = 7. We continue the
do—whi | e loop until g and h have passed each other, that is when

g > h. Atthispoint, the lists will be roughly sorted, with vaues smdler
than 19 on the left, and values greater than 19 on the right.

If the left sublist has more than one value, (which is determined by the
h > first expresson), then arecursive cal of qui cksort ismade.
Thiscal of qui cksort will send the index positions that define that
smaler sublist.

Likewise, if the right sublist has more than one value, qui cksort is
caled again and the index positions that define that sublist are passed.

©2003, ICT 0.A.26.1 (Page3)



See Transparency
T.A.26.2, LogpN Steps

SUMMARY/
REVIEW:

ASSIGNMENT:

APCS - Java, Lesson 26

B. Order of Quicksort

. Determining the order of quicksort, O (N* log:N), is a difficult process.
The best way to understand it is to imagine a hypothetica situation in
which each call of qui cksort resultsin sublists of the same size. Such
asizeis 128, because it is a power of 2.

2. If alist has 128 dements, the number of calls of qui cksort requiredto
move avalue into its correct spot is10g,128, which equals 7 steps. Dividing
the list in haf gives us the log,N aspect of quicksort.

3. But we need to do this to 128 numbers, so the approximate number of steps
to sort 128 numberswill be 128 * log, 128. A genera expression of the order
of quicksort will be O(N * logzN). An O(N * log;N) algorithm isamore
specific designation of the broader category called O(N * log N).

4. A graph of an O(N+* log;N) agorithm is close to alinear algorithm, for large
valuesof N. Thelog,N number of steps grows very dowly, making quicksort
adramatic improvement over the O(N2) sorts.

Quicksort is generaly the fastest and therefore most widely used sorting
agorithm. Thereisavariation of quicksort named "quickersort” but it is ill inthe
same class of agorithms. Once again, recursion makes fast work of a dfficult
task.

Lab Exercise L.A.26.1, Quicksort

©2003, ICT 0.A.26.1 (Page 4)



LAB EXERCISE

Quicksort

Assignment:

1. Typeinthequi ckSort method as a separate file and save it to disk.

2. Cut and paste the qui ckSor t agorithm into your sorting template program and count the number of
steps needed for qui ckSort . Record the number of stepsin Lab Exercise, L.A.23.1, Quadratics
from Lesson 23.

3. Graph the number of steps of the three quadratic sorts (bubble, selection, insertion) and the recursive
mergesort and quicksort on the same piece of graph paper. Plot number of steps on the vertical axis
and number of data elements on the horizontal axis. 1t will be difficult to graph the more efficient
agorithms as the number of steps are so much smaller than the quadratic agorithms. Make an
estimate of where the data points occur for recursive mergesort and quicksort.

Instructions:

1. Turninthelab exercise, L.A.23.1, Quadratics, with your graph.

APCS - Java, Lesson 26 © ICT 2003, www.ict.org, All Rights Reserved L.A.26.1 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



quickSort Method

void quickSort (int[] list, int first, int |ast)
{

int g ="first, h =last;

i nt mdl ndex, dividingVal ue;

mdlndex = (first + last) / 2;

di vidi ngval ue = Iist[m dl ndex];

do

{
while (list[g] < dividingVal ue) g++;
while (list[h] > dividingValue) h--;

if (g <= h)
{
int tenp = list[g];
list[g] = 1list[h];
list[h] = tenp;
g++;
h--;
}
}
while (g < h);
if (h > first) quickSort (list, first, h);
If (g <last) quickSort (list, g, last);
}
APCS - Java, Lesson 26 © ICT 2003, www.ict.org, All Rights Reserved H.A.26.1 (Page 1)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



