
APCS – Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved O.A.41.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 41 – Priority Queues

INTRODUCTION: In this lesson we consider priority queues. A priority queue is essentially a list of

items, each associated with a priority. In general, different items may have
different priorities and we speak of one item having a higher priority than another.
Given such a list we can determine which is the highest (or the lowest) priority
item in the list. Items are inserted into a priority queue in any arbitrary order.
However, items are withdrawn from a priority queue in order of their priorities
starting with the highest priority item first.

The key topics for this lesson are:

A. Priority Queues
B. Heaps
C. Heap Deletion and Insertion
D. Storage of Complete Trees
E. The PriorityQueue Interface

VOCABULARY: COMLETE TREE HEAP PROPERTY
 HEAP PRIORITY QUEUE
 HEAPSORT

DISCUSSION: A. Priority Queues

1. Often the items added to a queue have a priority associated with them: this

priority determines the order in which they exit the queue - highest priority
items are removed first. In this curriculum guide, we will follow the
convention that the smallest value has the highest priority.

2. For example, consider the software that manages a printer. In general, it is

possible for users to submit documents for printing much more quickly than it
is possible to print them. A simple solution is to place the documents in a
FIFO queue. In a sense this is fair, because the documents are printed on a
first-come, first-served basis.

However, a user who has submitted a short document for printing will
experience a long delay when much longer documents are already in the
queue. An alternative solution is to use a priority queue in which the shorter a
document, the higher its priority. By printing the shortest documents first, we
reduce the level of frustration experienced by the users. In fact, it can be
shown that printing documents in order of their length minimizes the average
time a user waits for her document.

APCS – Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved O.A.41.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

3. As we have seen, we could use a tree structure - which generally provides
O(log n) performance for both insertion and deletion. Unfortunately, if the
tree becomes unbalanced, performance will degrade to O(n) in worst cases.
This will probably not be acceptable when dealing with dangerous industrial
processes, nuclear reactors, flight control systems and other life-critical
systems.

4. There is a structure that will provide guaranteed O(log n) performance for

both insertion and deletion: it's called a heap.

B. Heaps

1. Heaps are based on the notion of a complete tree. A binary tree is called

completely full if all its levels are filled with nodes. A binary tree is
completely full if it is of height h, and has 2h-1 nodes. Each level contains
twice as many nodes as the preceding level.

2. A binary tree is called complete if it has no gaps on any level. The last level

may have some leaves missing on the right as shown below:

3. A heap is a binary tree that satisfies two conditions:

a. It is a complete tree
b. The value in each node does not exceed any value in that node’s left and

right subtrees.

Heaps are allowed to have more than one data item with the same value, and
values in the left subtree do not have to be ranked lower than values in the
right subtree.

4. A heap can be used as a priority queue: the highest priority item is at the root
and is trivially extracted. But if the root is deleted, we are left with two sub-
trees and we must efficiently re-create a single tree with the heap property.
The value of the heap structure is that we can both extract the highest priority
item and insert a new item in O(log n) time.

Full tree Complete tree

APCS – Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved O.A.41.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

C. Heap Deletion and Insertion

1. Removing an item from a priority queue is straightforward if the queue is

represented by a binary heap. The next item to leave the queue will always
be the item at the top (root) of the heap.

2. The shape of the heap is restored by removing the last leaf and placing it into
the root. For the heap shown below, the position that must become empty is
the one occupied by the 87. This is placed in the vacant root position.

3. This has violated the condition that the root must be greater than each of its
children. To repair the order, we apply the “heapify” procedure in which the
value from the root moves down the heap until it falls into place.

4. At each step down the value 87 is swapped with its smaller child.

18 24

22 38 56 30

34 97 95 83 81 87

13

87

18 24

22 38 56 30

34 97 95 83 81

18

87 24

22 38 56 30

34 97 95 83 81

18

22 24

87 38 56 30

34 97 95 83 81

APCS – Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved O.A.41.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

APCS – Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved O.A.41.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. The heap property still has not been restored in the left subtree. So again
interchange the 87 with the smaller of its children.

6. We need to make at most h interchanges of a root of a subtree with one of its
children to fully restore the heap property. Thus deletion from a heap is O(log
n).

7. To add an item to a heap, we follow the reverse procedure. First we add the

new node as the last leaf, and then apply a “reheap up” procedure to restore
the ordering property of the heap. “Reheap up” moves the new node up the
tree, swapping places with its parent until the order is restored. For example,
adding the value 9 to the original heap would result in the following sequence
of steps:

8. Again, we require O(log n) exchanges.

18

22 24

34 38 56 30

87 97 95 83 81

9

18 13

22 38 30 24

34 97 95 83 56 87 81

13

18 24

22 38 30 81

34 97 95 83 56 87 9

13

9

9

9

24

81

9

APCS – Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved O.A.41.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

D. Storage of Complete Trees

1. The properties of a complete tree lead to a very efficient storage mechanism

using n sequential locations in an array.

2. An important benefit of the array representation is that we can move around

the tree, from parent to children or from child to parent, by simple arithmetic.
In general, if we number the nodes from 1 at the root then

a. The left and right children of node i, if they are present, are at 2i and

2i+1
b. The parent of node i is at i/2 (truncated to an integer).

3. If items is the array, the root corresponds to Items[1]; subsequent slots in
the array store the nodes in each consecutive level from left to right.

4. In a Java implementation, it is convenient to leave Items[0] unused. With
this numbering of nodes, the children of the node Items[i] can be found in
Items[2*i] and Items[2*i+1], and the parent of Items[i] is in
Items[i/2].

E. The PriorityQueue Interface

1. A priority queue contains items ranked according to some relation of order

and provides methods to add an item and to remove and return the smallest
item. The items in a priority queue do not have to all be different; if several
items have the smallest rank, the removal method can remove and return any
one of them. In a Java implementation, we assume that the items are
Comparable objects.

13

18 24

22 38 56 30

34 97

13
18
24
22
38
56
30
34
97

<null>
Items[1]
Items[2]
Items[3]
Items[4]
Items[5]
Items[6]
Items[7]
Items[8]
Items[9]

Items[0]
[1]

[2] [3]

[4] [5] [6] [7]

[8] [9]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

13 18 24 22 38 56 30 34 97

APCS – Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved O.A.41.1 (Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. The Java library packages do not supply an interface specifically for priority
queues. The PriorityQueue interface* shown below defines four methods:
isEmpty, add, removeMin, and peekMin. The methods in this interface are
analogous to the ones in the Stack interface and the Queue interface.

public interface PriorityQueue
{
 // Returns true if the number of elements in the
 // priority queue is 0; otherwise, returns false
 boolean isEmpty();

 // obj has been added to the priority queue;
 // number of elements in the priority queue is increased by 1
 void add(Object obj);

 // The smallest item in the priority queue is removed and
 // returned; the number of elements in the priority queue
 // is decreased by 1. Throws an unchecked exception if the
 // priority queue is empty
 Object removeMin();

 // The smallest item in the priority queue is returned; the
 // priority queue is unchanged. Throws an unchecked exception
 // if the priority queue is empty
 Object peekMin();
}

See ArrayPriorityQueue.java. 3. The Java Library does not supply a class that implements a priority queue. A
simplistic class that implements a priority queue can be put together very
quickly based on an ArrayList or LinkedList (for the full ArrayList
implementation of a priority queue see ArrayPriorityQueue.java).
However, a more efficient implementation can be developed based on
heaps.

SUMMARY/
REVIEW:

In this lesson, we developed a formal representation of a priority queue as a Java
interface. We discussed the concept of a heap and the implementation of an
efficient priority queue based on a heap. In the lab exercise, we will develop a
heap based priority queue and use it to sort a file using the Heapsort algorithm.

This now concludes our coverage of different methods of data storage in the
curriculum guide. As you continue in computer science, you will no doubt learn
about other data structures and algorithms. Keep reading and learning!

ASSIGNMENT: Lab Exercise L.A.41.1, Heapsort

* Adapted from the College Board’s AP Computer Science AB: Implementation Classes and Interfaces.

APCS - Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved L.A.41.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Heapsort

Background:

A priority queue, implemented as a heap, can be used for sorting. To do that we must add all the items to a
priority queue in any order, and then remove them one by one. The items will be returned in ascending
order. This efficient algorithm is called Heapsort.

To realize the heapsort algorithm, it is necessary to develop a class that implements the PriorityQueue
interface using a binary heap.

This lab will use a text file, “file20.txt”, which is similar to the one used in the binary search lab in Lesson
28. The file has been saved in random order by Id number. Your program must build a binary heap
based on the Id field. The priority queue should be implemented as a HeapPriorityQueue of type
Item.

Assignment:

1. Here are some of the specifications for the methods to be added to the HeapPriorityQueue class:

a. You are to write a method isEmpty that returns true if the number of element in the priority
queue is 0; otherwise it returns false.

b. An add method will add a new item to the heap, rearranging the heap as necessary to preserve

the heap structure.

c. The removeMin method will return and remove the highest priority item from the priority queue.

If the queue is empty, a NoSuchElementException should be thrown.

c. The peekMin method will return the highest priority item from the priority queue. If the queue is

empty, a NoSuchElementException should be thrown.

e. It is recommended that a heapify helper method be created as described in the lesson to
reorganize the heap to preserve the heap structure after the removal of the root item.

f. The heap structure should be contained in an ArrayList. To aid in coding, the root of the binary

heap should start at index 1.

g. Reading the data file is a similar process to that used in Store.java in Lesson 27.

h. Printing the list involves the same code as used in the previous lessons.

APCS - Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved L.A.41.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. If your instructor chooses, you will be provided with a program shell consisting of a main menu

method, testing methods, and stubbed methods for routines you must develop. Here are some of the
specifications of this program shell.

a. A HeapSort test method is provided. A method to read the data file is provided. However, the

sort method is stubbed out as a print statement.

b. The Item class is provided.

c. The remove method returns a null value.

d. A shell for the HeapPriorityQueue class is provided. The add, removeMin, peekMin, and

isEmpty, methods are stubbed out.

g. Methods to read the data file and print the list are provided.

Instructions:

1. Modify and write code as necessary to satisfy the above specifications.

2. Print out the entire source code.

3. Include a printed run output of the file in original and sorted order.

