
APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 29 - Inheritance, Polymorphism, and Abstract Classes

INTRODUCTION: A class represents a set of objects that share the same structure and behaviors.
The class determines the structure of objects by specifying variables that are
contained in each instance of the class, and it determines behavior by providing the
instance methods that express the behavior of the objects. This is a powerful idea.
However, something like this can be done in most programming languages. The
central new idea in object-oriented programming is to allow classes to express the
similarities among objects that share some, but not all, of their structure and
behavior. Such similarities can be expressed using inheritance and polymorphism.

The key topics for this lesson are:

A. Inheritance
B. Abstract Classes
C. Polymorphism
D. Interfaces

VOCABULARY: ABSTRACT CONCRETE CLASS

SUPERCLASS SUBCLASS
INSTANCE POLYMORPHISM
INTERFACE EARLY BINDING
LATE BINDING

DISCUSSION: A. Inheritance

1. A key element in Object Oriented Programming is the ability to derive new
classes from existing classes by adding new methods and redefining existing
methods. The new class can inherit many of its attributes and behaviors from
the existing class. This process of deriving new classes from existing classes is
called inheritance, which we introduced in Lesson 14.

The more general class that forms the basis for inheritance is called the
superclass. The more specialized class that inherits from the superclass is
called the subclass (or derived class).

Parent
(superclass

Child2
(subclass)

Child1
(subclass)

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. In Java, all classes belong to one big hierarchy derived from the most basic

class, called Object. This class provides a few features common to all objects;
more importantly, it makes sure that any object is an instance of the Object
class, which is useful for implementing structures that can deal with any type of
object. If we start a class from “scratch” the class automatically extends
Object. For example:

public class SeaCreature
{
 ...
}

is equivalent to:

public class SeaCreature extends Object
{
 ...
}

when new classes are derived from SeaCreature, a class hierarchy is
created. For example:

public class Fish extends SeaCreature
{
 ...
}

public class Mermaid extends SeaCreature
{
 ...
}

This results in the hierarchy shown below.

B. Abstract Classes

1. The classes that lie closer to the top of the hierarchy are more general and

abstract; the classes closer to the bottom are more specialized. Java allows us
to formally define an abstract class. In an abstract class, some or all methods
are declared abstract and left without code.

SeaCreature

Fish Mermaid

Figure 28-1. SeaCreature and two derived classes

java.lang.object

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. An abstract method has only a heading: a declaration that gives the

method’s name, return type, and arguments. An abstract method has no
code. For example, all of the methods in the definition of the SeaCreature
class shown below are abstract. SeaCreature tells us what methods a sea
creature must have, but not how they work.

// A type of creature in the sea
public abstract class SeaCreature
{
 // Called to move the creature in its environment
 public abstract void swim();

 // Attempts to breed into neighboring locations
 public abstract void breed();

 // Removes this creature from the environment
 public abstract void die();

 // Returns the name of the creature
 public abstract String getName();
}

3. In an abstract class, some methods and constructors may be fully defined

and have code supplied for them while other methods are abstract. A class
may be declared abstract for other reasons as well. For example, some of the
instance variables in an abstract class may belong to abstract classes.

4. More specialized subclasses of an abstract class have more and more methods

defined. Eventually, down the inheritance line, the code is supplied for all
methods. A class where all the methods are fully defined and which has no
abstract fields is called a concrete class. A program can only create objects of
concrete classes. An object is called an instance of its class. An abstract
class cannot be instantiated.

5. Different concrete classes in the same hierarchy may define the same method

in different ways. For example:

public class Fish extends SeaCreature
{
 ...

 /**
 * Returns the name of the creature
 */
 public String getName()
 {
 return "Wanda the Fish";
 }
 ...
}

public class Mermaid extends SeaCreature
{
 ...

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 /**
 * Returns the name of the creature
 */
 public String getName()
 {
 return "Ariel the Mermaid";
 }
 ...
}

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

C. Polymorphism

1. In addition to facilitating the re-use of code, inheritance provides a common

base data type that lets us refer to objects of specific types through more
generic types of references; in particular, we can mix objects of different
subtypes in the same collection. For example

SeaCreature s = new Fish(...);
...
s.swim();

The data type of an instance of the Fish class is a Fish, but it is also a kind of
SeaCreature. Java provides the ability to refer to a specific type through
more generic types of references.

2. There may be situations that require a reference to an object using its more

generic supertype rather than its most specific type. One such situation is when
different subtypes of objects in the same collection (array, list, etc.) are mixed.
For example:

SeaCreature creatures = new SeaCreature[2];
creatures[0] = new Fish(...);
creatures[1] = new Mermaid(...);
...
creature[currentCreature].swim();

This is possible because both Fish and Mermaid are SeaCreatures.

3. Note that the Fish and Mermaid classes provide two different

implementations of the swim method. The correct method that belongs to the
class of the actual object is located by the Java virtual machine. That means
that one method call

String s = x.getname();

can call different methods depending on the current reference of x.

4. The principle that the actual type of the object determines the method to be

called is called polymorphism (Greek for “many shapes”). The same
computation works for objects of many forms and adapts itself to the nature of
the objects. In Java, all instance methods are polymorphic.

5. There is an important difference between polymorphism and overloading. With

an overloaded method, the compiler picks the correct method when translating
the program, before the program ever runs. This method selection is called
early binding. With a polymorphic method, selection can only take place when
the program runs. This method of selection is called late binding.

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

D. Interfaces

1. In Lesson 14 you saw that Java has a class-like form called an interface that

can be used to encapsulate only abstract methods and constants. An interface
can be thought of as a blueprint or design specification. A class that uses this
interface is a class that implements the interface.

2. An interface is similar to an abstract cla ss: it lists a few methods, giving their

names, return types, and argument lists, but does not give any code. The
difference is that an abstract class my have its constructors and some of its
methods implemented, while an interface does not give any code for its
methods, leaving their implementation to a class that implements the interface.

3. interface and implements are Java reserved words. Here is an example

of a simple Java interface:

public interface Comparable
{
 public int compareTo(Object other);
}

This looks much like a class definition, except that the implementation of the
compareTo() method is omitted. A class that implements the Comparable
interface must provide an implementation for this method. The class can also
include other methods and variables. For example,

class Location implements Comparable
{
 public int compareTo(Object other)
 {
 . . . // do something -- presumably, compare objects
 }
 . . . // other methods and variables
}

Any class that implements the Comparable interface defines a compareTo()
instance method. Any object created from such a class includes a
compareTo() method. We say that an object implements an interface if it
belongs to a class that implements the interface. For example, any object of
type Location implements the Comparable interface. Note that it is not
enough for the object to include a compareTo() method. The class that it
belongs to must say that it “implements” Comparable .

4. A class can implement any number of interfaces. In fact, a class can both

extend another class and implement one or more interfaces. So, we can have
things like

class Fish extends SeaCreature implements Locatable, Eatable
{
 ...
}

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. An interface is very much like an abstract class. It is a class that can never be
used for constructing objects, but can be used as a basis for making subclasses.
Even though you can't construct an object from an interface, you can declare a
variable whose type is given by the interface. For example, if Locatable is an
interface defined as follows:

public interface Locatable
{
 Location location();
}

then if Fish and Mermaid are classes that implement Locatable, you could
say:

/**
 * Declare a variable of type Locatable. It can refer to
 * any object that implements the Locatable interface.
 */
Locatable nemo;

nemo = new Fish(); // nemo now refers to an object
 // of type Fish
nemo.location(); // Calls location () method from
 // class Fish
nemo = new Mermaid(); // Now, nemo refers to an object
 // of type Mermaid.
nemo.location(); // Calls location() method from
 // class MerMaid

A variable of type Locatable can refer to any object of any class that
implements the Locatable interface. A statement like nemo.location(),
above, is legal because nemo is of type Locatable, and any Locatable
object has a location() method.

6. You are not likely to need to write your own interfaces until you get to the point

of writing fairly complex programs. However, there are a few interfaces that
are used in important ways in Java's standard packages. You'll learn about
some of these standard interfaces in the next few lessons, and you will see
examples of interfaces in the Marine Biology Simulation, which was developed
for use in AP Computer Science courses by the College Board™.

SUMMARY/REVIEW: The main goals of OOP are team development, software reusability, and easier
program maintenance. The main OOP concepts that serve these goals are
abstraction, encapsulation, inheritance, and polymorphism. In this lesson, we
reviewed these key concepts and their implementation in Java. This lesson
examined how Java uses classes and interfaces, inheritance hierarchies, and
polymorphism to achieve the goal of better-engineered programs.

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved O.A.29.1 (Page 8)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

ASSIGNMENT: Lab Exercise, L.A.29.1, Old MacDonald

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved L.A.29.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

OldMacDonald

Background:

Old MacDonald had a farm and several types of animals. Every animal shared certain characteristics:
they had a type (such as cow, chick or pig) and each made a sound (moo, cluck or oink). An Interface
defines those things required to be an animal on the farm.

public interface Animal
{
 public String getSound();
 public String getType();
}

In this lab, we use Old MacDonald's Farm to learn about Inheritance and Polymorphism.

Notes:
This lab is adapted with gratitude from a lab developed by Roger Frank of Ponderosa HS, Parker CO.

For those unfamiliar with it, a version of the Old MacDonald song is found at
http://www.scoutsongs.com/lyrics/oldmacdonald.html.

Assignment:

1. Once we know what it takes to be an Animal, we can define new classes for the cow, chick and pig

that implement the Animal interface. Here is a Cow class meeting the minimum requirements to be an
Animal.

class Cow implements Animal
{
 private String myType;
 private String mySound;

 Cow(String type, String sound)
 {
 myType = type;
 mySound = sound;
 }

 public String getSound() { return mySound; }
 public String getType() { return myType; }
}

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved L.A.29.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. Implement classes for the chick and the pig. Also complete the test program below to verify your
work so far:

class OldMacDonald
{
 public static void main(String[] args)
 {
 Cow c = new Cow("cow", "moo");
 System.out.println(c.getType() + " goes " + c.getSound());

 // < your code here >
 }
}

3. Create a complete farm to test all your animals. Here is the Farm.java source code.

class Farm
{
 private Animal[] a = new Animal[3];
 Farm()
 {
 a[0] = new Cow("cow","moo");
 a[1] = new Chick("chick","cluck");
 a[2] = new Pig("pig","oink");
 }

 public void animalSounds()
 {
 for (int i = 0; i < a.length; i++)
 {
 System.out.println(a[i].getType() + " goes " + a[i].getSound());
 }
 }
}

You will need to change your OldMacDonald.java code to create an object of type Farm and then
to invoke its animalSounds method.

4. Turns out, the chick is a little confused. Sometimes it makes one sound, when she is feeling childish,

and another when she is feeling more grown up. Her two sounds are "cheep" and "cluck". Modify the
Chick.java code to allow a second constructor allowing two possible sounds and the getSound()
method to return either sound, with equal probability, if there are two sounds available. You will also
have to modify your Farm.java code to construct the Chick with two possible sounds.

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved L.A.29.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. Finally, it also came to pass that the cows get a personal name, like Elsie. Create a new class,
NamedCow, that extends the Cow class, adding a constructor, a field for the Cow's name, and a new
method: getName. The final Farm.java code to exercise all your modifications is shown here:

class Farm
{
 private Animal[] a = new Animal[3];
 Farm()
 {
 a[0] = new NamedCow("cow","Elsie","moo");
 a[1] = new Chick("chick","cheep","cluck");
 a[2] = new Pig("pig","oink");
 }

 public void animalSounds()
 {
 for (int i = 0; i < a.length; i++)
 {
 System.out.println(a[i].getType() + " goes " + a[i].getSound());
 }
 System.out.println("The cow is known as " +
 ((NamedCow)a[0]).getName());
 }
}

6. Make sure you understand what you just accomplished. Having an array of Animal objects and then

having the getSound() method dynamically decide what sound to make is polymorphism. This is
also known as late binding because it wasn't known until run-time that a[1], for example, really had
a Chick object.

You started with an Interface for an Animal and then used the keyword implements in making the
three types of animals. Then you created a specialized version of the Cow, a NamedCow, using the
keyword extends. This illustrates the concept of inheritance. The NamedCow had all the attributes
and methods of the Cow and then added some: a new field and a new method to access the cow's
name.

Instructions:

1. Develop and test the Old MacDonald Farm classes a described in the Assignment section above.

2. Your lab assignment should consist of the following 7 files:

Animal.java – interface
Chick.java, Cow.java, Pig.java – implementations of the Animal interface
NamedCow.java – subclass of the Cow class
Farm.java – collection of Animal objects
OldMacDonald.java – testing class

APCS - Java, Lesson 29 © ICT 2003, www.ict.org, All Rights Reserved L.A.29.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

3. Turn in your source code and run output.

