INTRODUCTION:

VOCABULARY:

DISCUSSION:

APCS - Java, Lesson 41

STUDENT OUTLINE

Lesson 41 — Priority Queues

In this lesson we consider priority queues. A priority queueis essentidly alist of
items, each associated with a priority. In general, different items may have
different priorities and we spesk of one item having a higher priority than another.
Given such alist we can determine which is the highest (or the lowest) priority
item in the list. Items are inserted into a priority queue in any arbitrary order.
However, items are withdrawn from a priority queue in order of their priorities
starting with the highest priority item first.

The key topics for this lesson are:

Priority Queues

Heaps

Heap Deletion and Insertion
Storage of Complete Trees
ThePriorityQueue Interface

moow>»

COMLETE TREE HEAP PROPERTY
HEAP PRIORITY QUEUE
HEAPSORT

A. Priority Queues

1. Often the items added to a queue have a priority associated with them: this
priority determines the order in which they exit the queue - highest priority
items are removed first. In this curriculum guide, we will follow the
convention that the smallest vaue has the highest priority.

2. For example, consider the software that manages a printer. In generdl, it is
possible for users to submit documents for printing much more quickly than it
is possible to print them. A smple solution is to place the documentsin a
FIFO queue. In a sense thisisfair, because the documents are printed on a
first-come, first-served basis.

However, a user who has submitted a short document for printing will
experience along delay when much longer documents are aready in the
queue. An alternative solution isto use a priority queue in which the shorter a
document, the higher its priority. By printing the shortest documents first, we
reduce the level of frustration experienced by the users. In fact, it can be
shown that printing documents in order of their length minimizes the average
time a user waits for her document.

© ICT 2003, www.ict.org, All Rights Reserved 0.A411 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS - Java, Lesson 41

Aswe have seen, we could use atree structure - which generaly provides
O(log n) performance for both insertion and deletion. Unfortunately, if the
tree becomes unbalanced, performance will degrade to O(n) in worst cases.
Thiswill probably not be acceptable when dealing with dangerous industria
processes, nuclear reactors, flight control systems and other life-critical
systems.

There is a structure that will provide guaranteed O(log n) performance for
both insertion and deletion: it's called a heap.

. Heaps

Heaps are based on the notion of a complete tree. A binary treeis called
completely full if al itslevels are filled with nodes. A binary treeis
completely full if it is of height h, and has 2" 1 nodes. Each level contains
twice as many nodes as the preceding level.

A binary treeis called complete if it has no gaps on any level. The last leve
may have some leaves missing on the right as shown below:

o/o\o o/o\o
RN 7N\ 7N\ AN
/O\ /O\ /O\ /O\ /O\ /O\ /O O
OO OO0 O0O0O 00O OO0 00O
Full tree Completetree

3. A heapisabinary treethat satisfies two conditions:

a. lItisacompletetree
b. The vauein each node does not exceed any vauein that node' s left and
right subtrees.

Heaps are allowed to have more than one data item with the same value, and
values in the left subtree do not have to be ranked lower than valuesin the
right subtree.

A heap can be used as a priority queue: the highest priority item is at the root
and istrividly extracted. But if the root is deleted, we are left with two sub-
trees and we must efficiently re-create a single tree with the heap property.
The value of the heap structure is that we can both extract the highest priority
item and insert a new item in O(log n) time.

© ICT 2003, www.ict.org, All Rights Reserved 0.A41.1 (Page2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

C. Heap Ddetion and Insertion

1. Removing an item from a priority queue is straightforward if the queueis
represented by a binary heap. The next item to |eave the queue will aways
be the item at the top (root) of the heap.

/\/ \/\
/ @\ / \ / \

2. The shape of the heap is restored by removing the last leaf and placing it into
the root. For the heap shown below, the position that must become empty is
the one occupied by the 87. Thisis placed in the vacant root position.

/\/ 2
@)

/\ / \ /\

3. Thishas violated the condition that the root must be greater than each of its
children. To repair the order, we apply the “heapify” procedure in which the
vaue from the root moves down the heap until it fals into place.

/*

g— e
RN /N
/@\ /\ /

4. At each step down the vaue 87 is swapped with its smaller child.

/\

@)
2N VN
/\‘) /\ /

APCS - Java, Lesson 41 © IC?.ict.SI(Iees u@‘ 0AA411 (Page 3)

Usep orfy by COrden
with license terms (http://www.ict.org/javalicense.pdf)

APCS—Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved 0.A41.1 (Page 4)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

5. The heap property till has not been restored in the left subtree. So again
interchange the 87 with the smaller of its children.

/ \
N N
e e p
&*

6. We need to make at most h interchanges of aroot of a subtree with one of its
children to fully restore the heap property. Thus deletion from a heap is O(log

n).

7. Toadd an item to a heap, we follow the reverse procedure. First we add the
new node as the last leaf, and then apply a“reheap up” procedure to restore
the ordering property of the heap. “Reheap up” moves the new node up the
tree, swapping places with its parent until the order is restored. For example,
adding the value 9 to the original heap would result in the following sequence
of steps:

@A“\ ®

/TN /N /N
@@ ®® ® @ @

8. Again, werequire O(log n) exchanges.

APCS—Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved 0.A41.1 (Page5)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS - Java, Lesson 41

. Storage of Complete Trees

The properties of a complete tree lead to a very efficient storage mechanism
using n sequentia locations in an array.

An important benefit of the array representation is that we can move around
the tree, from parent to children or from child to parent, by smple arithmetic.
In generad, if we number the nodes from 1 at the root then

a. Theleft and right children of nodei , if they are present, are at 2i and
2i +1
b. The parent of nodei isati/ 2 (truncated to an integer).

If i t ems isthe array, the root correspondsto | t ens[1] ; subsequent dotsin
the array store the nodes in each consecutive level from left to right.

(13 Itemsi 01 [<null>
/[1]\ Items[11 | 13
I tensl 21 18

Itens[3] [24

/[2] /[3]\ Itensi4l | 22

@ I tens[5] gg

It ensl 61
It ensl 81 34
(8] 9] I'tens[9] 97

In a Javaimplementation, it is convenient to leave | t ems[0] unused. With
this numbering of nodes, the children of thenode 1 t ens[i] canbefoundin
Items[2*i] and I tens[2*i +1] , and the parent of I t ens[i] isSin

Itens[i/2].
,”\a/'7<>\\\‘m

13|18 |24|22|38|56 (30| 34|97
(0] [11\[%]\[‘3] [41 (5116 [7] [Ei]/[v9]

N
PN

~

. ThePriorityQeue Interface

A priority queue contains items ranked according to some relation of order
and provides methods to add an item and to remove and return the smallest
item. Theitemsin apriority queue do not haveto al be different; if several
items have the smallest rank, the removal method can remove and return any
one of them. In a Java implementation, we assume that the items are
Conpar abl e objects.

© ICT 2003, www.ict.org, All Rights Reserved 0.A41.1 (Page 6)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

2. TheJavalibrary packages do not supply an interface specificaly for priority
queues. ThePri orityQueue interface” shown below defines four methods:
i sEnpty, add, renmoveM n, and peekM n. The methods in thisinterface are
anaogous to the ones in the St ack interface and the Queue interface.

public interface PriorityQueue

{
/1 Returns true if the number of elenents in the
/1 priority queue is 0; otherw se, returns fal se
bool ean i sEmpty();

/1 obj has been added to the priority queue;
/1 nunber of elenments in the priority queue is increased by 1
voi d add(bj ect obj);

/1 The smallest itemin the priority queue is renoved and
/1 returned; the nunber of elenents in the priority queue
/1 is decreased by 1. Throws an unchecked exception if the
/1 priority queue is enpty

Coj ect removeM n();

/1 The smallest itemin the priority queue is returned; the
/1 priority queue is unchanged. Throws an unchecked exception
/1 if the priority queue is enpty
bj ect peekM n();

}

See ArrayPriorityQueuejava. 3, The Java Library does not supply a class that implements a priority queue. A

SUMMARY/
REVIEW:

ASSIGNMENT:

simplistic class that implements a priority queue can be put together very
quickly based on an Ar r ayLi st or Li nkedLi st (for thefull ArrayLi st
implementation of a priority queue see ArrayPriorityQueue.java).
However, a more efficient implementation can be developed based on
heaps.

In this lesson, we developed aformal representation of a priority queue as a Java
interface. We discussed the concept of a heap and the implementation of an
efficient priority queue based on a heap. In the lab exercise, we will develop a
heap based priority queue and use it to sort a file using the Heapsort agorithm.

This now concludes our coverage of different methods of data storage in the

curriculum guide. Asyou continue in computer science, you will no doubt learn
about other data structures and algorithms. Keep reading and learning!

Lab Exercise L.A.41.1, Heapsort

" Adapted from the College Board' s AP Computer Science AB: Implementation Classes and Interfaces.

APCS - Java, Lesson 41

© ICT 2003, www.ict.org, All Rights Reserved 0.A41.1 (Page7)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE
Heapsort

Background:

A priority queue, implemented as a heap, can be used for sorting. To do that we must add al the itemsto a
priority queue in any order, and then remove them one by one. The items will be returned in ascending
order. This efficient algorithm is called Heapsort.

To redlize the heapsort algorithm, it is necessary to develop a class that implementsthe Pri ori t yQueue
interface using a binary heap.

Thislab will use atext file, “file20.txt”, which is smilar to the one used in the binary search lab in Lesson
28. Thefile has been saved in random order by | d number. Y our program must build a binary heap

based on the | d field. The priority queue should be implemented asaHeapPri ori t yQueue of type
Item

Assignment:
1. Here are some of the specifications for the methods to be added to the HeapPri ori t yQueue class:

a Youareto write amethod i sEnpt y that returns true if the number of element in the priority
queue is 0; otherwise it returns false.

b. Anadd method will add a new item to the heap, rearranging the heap as necessary to preserve
the heap structure.

c. TherenoveM n method will return and remove the highest priority item from the priority queue.
If the queue is empty, aNoSuchEl ement Except i on should be thrown.

c. ThepeekM n method will return the highest priority item from the priority queue. If the queue is
empty, aNoSuchEl ement Except i on should be thrown.

e. Itisrecommended that aheapi f y helper method be created as described in the lesson to
reorganize the heap to preserve the heap structure after the removal of the root item.

f. The heap structure should be contained in an Ar r ayLi st . To aid in coding, the root of the binary
heap should start at index 1.

0. Reading the datafileisasimilar processto that used in Store.java in Lesson 27.

h. Printing the list involves the same code as used in the previous lessons.

APCS- Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved L.A.41.1 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

2. If your ingtructor chooses, you will be provided with a program shell consisting of amai n menu
method, testing methods, and stubbed methods for routines you must develop. Here are some of the
specifications of this program shell.

a. A HeapSort test method is provided. A method to read the datafile is provided. However, the
sort method is stubbed out as a print statement.

b. Theltemclassis provided.
c. Therenove method returnsanul | value.

d. A shell for theHeapPri orityQueue classis provided. The add, r enoveM n, peekM n, and
i sEnpt y, methods are stubbed out.

0. Methods to read the data file and print the list are provided.

Instructions:
1. Modify and write code as necessary to satisfy the above specifications.
2. Print out the entire source code.

3. Include a printed run output of the file in origina and sorted order.

APCS- Java, Lesson 41 © ICT 2003, www.ict.org, All Rights Reserved L.A.41.1 (Page2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

