
APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 1) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

STUDENT OUTLINE  
 

Lesson 14 – Inheritance 
 
 

INTRODUCTION: Inheritance, a major component of object-oriented-programming, is a technique 
that will allow you to define a very general class and then later define more 
specialized classes based on it.  You will do this by adding some new capabilities 
to the existing more general class definitions or by changing the way the existing 
methods work to match the needs of the more specialized class. Inheritance 
saves work because the more specialized class inherits all the properties of the 
general class and you, the programmer, need only program the new features. 

 
The key topics for this lesson are: 

 
A. Single Inheritance 
B. Class Hierarchies  
C. Using Inheritance  
D. Method Overriding  
E. Interfaces  

 
 
VOCABULARY: PARENT CLASS SUPERCLASS 
 BASE CLASS SUBCLASS 
 CHILD CLASS DERIVED CLASS 
 METHOD OVERRIDING super 
 extends interface 
 implements 
  
 
DISCUSSION: A. Single Inheritance 

 
1. Inheritance enables you to define a new class based on a class that already 

exists. The new class will inherit the characteristics of the existing class, but 
also provide some additional capabilities. This makes programming easier, 
because you can reuse and extend your previous work and avoid duplication 
of code. 

 
2. The class that is used as a basis for defining a new class is called a 

superclass (or parent class or base class). The new class based on the 
superclass is called a subclass (or child class or derived class.)  

 
3. The process by which a subclass inherits characteristics from just one parent 

class is called single inheritance. Some languages allow a derived class to 
inherit from more than one parent class in a process called multiple 
inheritance. Multiple inheritance, makes is difficult to determine which class 
will contribute what characteristics to the child class. Java avoids these issues 
by only providing support for single inheritance.  



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 2) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

 
4. The figure shows a superclass and a subclass. The line between them shows 

the "is a kind of" relationship. The picture can be read as "a Student is a kind 
of Person."  The clouds represent the classes. That is, the picture does not 
show any particular Student or any particular Person, but shows that the 
class Student is a subclass of the Person class.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 14.1 – Subclass and Superclass. 

 
5. Inheritance is between classes, not between objects. A superclass is a 

blueprint that is followed when a new object is constructed. That newly 
constructed object is another blueprint that looks much like the original, but 
with added features. The subclass in turn can be used to construct objects 
that look like the superclass’s objects, but with additional capabilities.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 14.2 – Subclass and Superclass. 
 

6. The figure shows a superclass and a subclass, and some objects that have 
been constructed from each. These objects that are shown as rectangles are 
actual instances of the class. In the picture, "Albert Einstein," "Lynne 
Brooke," and "Monty Vista" represent actual objects.  

superclass 

subclass 

Person 

Student 

Albert 
Einstein 

Lynne 
Brooke 

Student 

Monty 
Vista 

High School 
Student 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 3) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

B. Hierarchies 
 
1. In a hierarchy, each class has at most one superclass, but might have several 

subclasses. There is one class, at the "top" of the hierarchy that has no 
superclass. This is sometimes called the root of the hierarchy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 14.3 – Person Inheritance Hierarchy. 

 
The figure shows a hierarchy of classes. It shows that "Principal is a kind 
of Person," "Student is a kind of Person," and that "Teacher is a kind of 
Person." It also shows that "HighSchoolStudent is a kind of Student” 
and  "CollegeStudent is a kind of Student." 

 
2. In our example, the class Person is the base class and the classes 

Principal, Student, Teacher, HighSchoolStudent, and 
CollegeStudent are derived classes.  

 
3. In Java, the syntax for deriving a child class from a parent class is:  

 
class subclass extends superclass 
{ 
  // new characteristics of the subclass go here 
}  
 

4. Several classes are often subclasses of the same class. A subclass may in 
turn become a parent class for a new subclass. This means that inheritance 
can extend over several "generations" of classes. This is shown in the 
diagram, where class HighSchoolStudent is a subclass of class 
Student, which is itself a subclass of the Person class. In this case, class 
HighSchoolStudent is considered to be a subclass of the Person class, 
even though it is not a direct subclass. 

Person 

Principal Teacher Student 

HighSchoolStude
nt 

Object 

CollegeStudent 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 4) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 5) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

5. In Java, every class that does not specifically extend another class is a 
subclass of the class Object. For example, in Figure 14.3, the Person class 
extends the Object class. The Object class has a small number of methods 
that make sense for all objects, such as the toString method, but these 
methods are not very useful and usually get redefined in classes lower in the 
hierarchy.  

 
 

C. Using Inheritance 
 
1. Here is a program that uses a class Person to represent people  you might 

find at a school. The Person class has basic information in it, such as name, 
age and gender.  An additional class, Student, is created that is similar to 
Person, but has the id and grade point average of the student.   

 
class Person 
{ 
  protected String myName ;   // name of the person 
  protected int myAge;        // person's age 
  protected String myGender;  // "M" for male, "F" for female 
 
  // constructor 
  public Person(String name, int age, String gender) 
  { 
    myName = name; myAge = age ; myGender = gender;  
  } 
 
  public String toString() 
  { 
    return myName + ", age: " + myAge + ", gender: " +myGender; 
  } 
} 
 
class Student extends Person 
{ 
  protected String myIdNum;    // Student Id Number 
  protected double myGPA;      // grade point average 
 
  // constructor 
  public Student(String name, int age, String gender, 
                 String idNum, double gpa) 
  { 
    // use the super class’s constructor 
    super(name, age, gender); 
 
    // initialize what's new to Student 
    myIdNum = idNum; 
    myGPA = gpa; 
  } 
} 
 
public class HighSchool 
{ 
  public static void main (String args[]) 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 6) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

  { 
    Person bob = new Person("Coach Bob", 27, "M"); 
    Student lynne = new Student("Lynne Brooke", 16, "F", 
                                 "HS95129", 3.5); 
    System.out.println(bob); 
    System.out.println(lynne); 
  } 
} 

 
2. The Student class is a derived class (subclass) of Person. An object of 

type Student contains the following members:  
 

Member  
myName inherited from Person 
myAge inherited from Person 
myGender inherited from Person 
toString() inherited from Person 
myIdNum defined in Student 
myGPA defined in Student 
 

3. The constructor for the Student class initializes the instance data of 
Student objects and uses the Person class’s constructor to initialize the 
data of the Person superclass. The constructor for the Student class looks 
like this:  
 
// constructor 
public Student(String name, int age, String gender, 
               String idNum, double gpa) 
{ 
  // use the super class’s constructor 
  super(name, age, gender); 
 
  // initialize what's new to Student 
  myIdNum = idNum; 
  myGPA = gpa; 
} 
   
The statement super(name, age, gender) invokes the Person class’s 
constructor to initialize the inherited data in the superclass. The next two 
statements initialize the members that only Student has. Note that when 
super is used in a constructor, it must be the first statement.  
 

4. It is not necessary to use super; the following would also work as a 
constructor for Student:  
 
// constructor 
public Student(String name, int age, String gender, 
               String idNum, double gpa) 
{ 
  // initialize the inherited members 
  myName = name; 
  myAge = age ; 
  myGender = gender; 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 7) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

 
  // initialize what's new to Student 
  myIdNum = idNum; 
  myGPA = gpa; 
} 
 
In this constructor, each variable of the newly created Student object is set 
to an initial value.  

 
 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 8) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

5. So far, we have only seen the public (class members that are inaccessible 
from outside of the class) and private (class members that can be accessed 
outside of class) access modifiers. There is a third access modifier that can 
be applied to an instance variable or method. If it is declared to be 
protected, then it can be used in the class in which it is defined and in any 
subclass of that class. This declaration is less restrictive than private and 
more restrictive than public. Classes that are written specifically to be used 
as a basis for making subclasses often have protected members. The 
protected members are there to provide a foundation for the subclasses to 
build on. But they are still invisible to the public at large. 

 
 
D. Method Overriding 
 
1. A derived class can override a method from its base class by defining a 

replacement method with the same signature. For example in our Student 
subclass, the toString() method contained in the Person superclass does 
not reference the new variables that have been added to objects of type 
Student, so nothing new is printed out.  We need a new toString() 
method in the class Student: 
   
// overrides the toString method in the parent class 
public String toString() 
{ 
  return myName + ", age: " + myAge + ", gender: " + myGender + 
         ", student id: " + myIdNum + ", gpa: " + myGPA; 
} 
 

2. Even though the base class has a toString() method, the new definition of 
toString() in the derived class will override the base class’s version . The 
base class has its method, and the derived class has its own method with the 
same name. With the change in the Student class the following program will 
print out the full information for both items.  
 
class School 
{ 
  public static void main (String args[]) 
  { 
    Person bob = new Person("Coach Bob", 27, "M"); 
    Student lynne = new Student("Lynne Brooke", 16, "F", 
                                 "HS95129", 3.5); 
 
    System.out.println(bob.toString()); 
    System.out.println(lynne.toString()); 
  } 
} 
 
Run Output: 
 
Coach Bob, age: 27, gender: M 
Lynne Brooke, age: 16, gender: F, student id: HS95129, gpa: 3.5 
 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 9) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

The line bob.toString() calls the toString() method defined in 
Person, and the line lynne.toString() calls the toString() method 
defined in Student. 

 
3. Sometimes (as in the example) you want a derived class to have its own 

method, but that method includes everything the derived class’s method does. 
You can use the super reference in this situation to first invoke the original 
toString() method in the base class as follows: 
 
public String toString() 
{ 
  return super.toString() + 
         ", student id: " + myIdNum + ", gpa: " + myGPA; 
} 
 
Inside a method, super does not have to be used in the first statement, unlike 
the case when super is used in a constructor. 

 
 
E. Interfaces 
 
1. In Java, an interface is a mechanism that unrelated objects use to interact 

with each other. Like a protocol, an interface specifies an agreed-on behavior 
(or behaviors). 

 
2. The Person class and its class hierarchy defines the attributes and behaviors 

of a person. But a person can interact with the world in other ways. For 
example, an employment program could manage a person at a school. An 
employment program isn't concerned with the kinds of items it handles as long 
as each item provides certain information, such as salary and employee id.  
This interaction is enforced as a protocol of method definitions contained 
within an interface. The Employable interface would define, but not 
implement, methods that set and get the salary, assign an id number, and so 
on. 

 
 
 
 
 
 
 
 

 
 

 
Figure 14.4 – Employable Interface. 

 
3. To work in the employment program, the Teacher class must agree to this 

protocol by implementing the interface. To implement an interface, a class 

Person 

Principal Student Teacher 

Employable 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 10) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

must implement all of the methods defined in the interface. In our example, 
the shared methods of the Employable interface would be implemented in 
the Teacher class. 

 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 11) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

4. In Java, an interface consists of a set of methods, without any associated 
implementations. Here is an example of Java interface that defines the 
behaviors of “employability” described earlier:  
 
public interface Employable 
{ 
  public double getSalary(); 
  public String getEmployeeID(); 
 
  public void setSalary(double salary); 
  public void setEmployeeID(String id); 
}  
 
A class implements an interface by supplying code for all the interface 
methods. implements is a reserved word. For example: 
 
public class Teacher implements Employable 
{ 
  ... 
  public double getSalary() { return mySalary; } 
  public int getEmployeeID() { return myEmployeeID; } 
 
  public void setSalary(double salary) { mySalary = salary; } 
  public void setEmployeeID(String id) { myEmployeeID = id; } 
}  

 
5. A class can implement any number of interfaces. In fact, a class can both 

extend another class and implement one or more interfaces. So, we can have 
things like 
 
public class Teacher extends Person implements Employable 
{ 
  ... 
} 
 

6. An interface defines a protocol that any cla ss anywhere in the class hierarchy 
can implement. Interfaces are useful for the following: 
 
− Declaring a common set of methods that one or more classes are 

required to implement 
− Providing access to an object's programming interface without revealing 

the details of its class. 
− Providing a relationship between dissimilar classes without imposing an 

unnatural class relationship.  
 
7. You are not likely to need to write your own interfaces until you get to the 

point of writing fairly complex programs. However, there are a few 
interfaces that are used in important ways in Java's standard packages. You'll 
learn about some of these standard interfaces in future lessons. In particular, 
the Marine Biology Simulation, which is supplied by the College Board™ for 
use in Advanced Placement Computer Science classes, makes frequent use 
of the interface concept. 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved O.A14.1 (Page 12) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

 
SUMMARY/ 
REVIEW: 

Inheritance represents the “is a kind of” relationship between types of objects. In 
practice it may be used to add new features to an existing class. It is the primary 
tool for reusing your own and standard library classes. Inheritance allows a 
programmer to derive a new class (called a derived class or a subclass) from 
another class (called a base class or superclass). A derived class inherits all the 
data fields and methods (but not constructors) from the base class and can add its 
own methods or redefine some of the methods of the base class. 

 

ASSIGNMENT: Lab Exercise, L.A.14.1, BackToSchool 
Lab Exercise, L.A.14.2, GraphicPolygon 



APCS - Java, Lesson 14  © ICT 2003, www.ict.org, All Rights Reserved L.A.14.1 (Page 1) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

LAB EXERCISE 
 

BackToSchool 
 
 
Background: 
 
The HighSchool application described in the lesson has two classes: the Person superclass and the 
Student subclass. Using inheritance, in this lab you will create two new classes, Teacher and 
CollegeStudent. A Teacher will be like Person but will have additional properties such as salary 
(the amount the teacher earns) and subject (e.g. “Computer Science”, "Chemistry",  "English", "Other”). 
The CollegeStudent class will extend the Student class by adding a year (current level in college) 
and major (e.g. “Electrical Engineering”, “Communications”, “Undeclared”). 
 
The inheritance hierarchy would appear as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here is the Person base class from the lesson to be used as a starting point for the Teacher class: 
 

class Person 
{ 
  protected String myName ;   // name of the person 
  protected int myAge;        // person's age 
  protected String myGender;  // "M" for male, "F" for female 
 
  // constructor 
  public Person(String name, int age, String gender) 
  { 
    myName = name; myAge = age ; myGender = gender;  
  } 
 
  public String toString() 
  { 
    return myName + ", age: " + myAge + ", gender: " +myGender; 

Person 

Teacher Student 

CollegeStuden
t 



APCS - Java, Lesson 14  © ICT 2003, www.ict.org, All Rights Reserved L.A.14.1 (Page 2) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

  } 
} 

 
 
The Student class is derived from the Person class and used as a starting point for the 
CollegeStudent class: 
 

class Student extends Person 
{ 
  protected String myIdNum;    // Student Id Number 
  protected double myGPA;      // grade point average 
 
  // constructor 
  public Student(String name, int age, String gender, 
                 String idNum, double gpa) 
  { 
    // use the super class' constructor 
    super(name, age, gender); 
 
    // initialize what's new to Student 
    myIdNum = idNum; 
    myGPA = gpa; 
  } 
} 

 
 
Assignment: 
 
1. Add methods to “set” and “get” the instance variables in the Person class. These would consist of: 

getName, getAge, getGender, setName, setAge, and setGender. 
 
2. Add methods to “set” and “get” the instance variables in the Student class. These would consist of: 

getIdNum, getGPA, setIdNum, and setGPA. 
 
3. Write a Teacher class that extends the parent class Person. 

 
a. Add instance variables to the class for subject (e.g. “Computer Science”, "Chemistry",, "English", 

"Other”) and salary (the teachers annual salary). Subject should be of type String and salary 
of type double. Choose appropriate names for the instance variables. 

 
b. Write a constructor for the Teacher class. The constructor will use five parameters to initialize 

myName, myAge, myGender, subject, and salary. Use the super reference to use the 
constructor in the Person superclass to initialize the inherited values. 

 
c. Write “setter” and “getter” methods for all of the class variables. For the Teacher class they 

would be: getSubject, getSalary, setSubject, and setSalary. 
 
d. Write the toString() method for the Teacher class. Use a super reference to do the things 

already done by the superclass. 
 



APCS - Java, Lesson 14  © ICT 2003, www.ict.org, All Rights Reserved L.A.14.1 (Page 3) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf)  

 
 
 
 
 
 
 
4. Write a CollegeStudent subclass that extends the Student class. 

 
a. Add instance variables to the class for major (e.g. “Electrical Engineering”, “Communications”, 

“Undeclared”) and year (e.g. FROSH = 1, SOPH = 2, …). Major should be of type String and 
year of type int. Choose appropriate names for the instance variables. 

 
b. Write a constructor for the CollegeStudent class. The constructor will use seven parameters 

to initialize myName, myAge, myGender, myIdNum, myGPA, year, and major. Use the super 
reference to use the constructor in the Student superclass to initialize the inherited values. 

 
c. Write “setter” and “getter” methods for all of the class variables. For the CollegeStudent class 

they would be: getYear, getMajor, setYear, and setMajor. 
 
d. Write the toString() method for the CollegeStudent class. Use a super reference to do 

the things already done by the superclass. 
 
5. Write a testing class with a main() that constructs all of the classes (Person, Student, Teacher, 

and CollegeStudent) and calls their toString() method.  Sample usage would be: 
 

Person bob = new Person("Coach Bob", 27, "M"); 
System.out.println(bob); 
 
Student lynne = new Student("Lynne Brooke", 16, "F", "HS95129", 3.5); 
System.out.println(lynne); 
 

    Teacher mrJava = new Teacher("Duke Java", 34, "M", "Computer Science", 50000); 
 System.out.println(mrJava); 
 
CollegeStudent ima = new CollegeStudent("Ima Frosh", 18, "F", "UCB123", 
                                         4.0, 1, "English"); 
System.out.println(ima); 
 
A sample run of the program would give: 

 
Coach Bob, age: 27, gender: M 
Lynne Brooke, age: 16, gender: F, student id: HS95129, gpa: 3.5 
Duke Java, age: 34, gender: M, subject: Computer Science, salary: 50000.0 
Ima Frosh, age: 18, gender: F, student id: UCB123, gpa: 4.0, year: 1, major: English 

 
6. Turn in the source code with the run output attached. There should be one source file for each class: 

Person.java for the Person class, Student.java for the Student class, Teacher.java for the 
Teacher class, CollegeStudent.java for the CollegeStudent class, and BackToSchool.java for 
the BackToSchool testing class. 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved L.A.14.2 (Page 1) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

LAB EXERCISE 
 

GraphicPolygon 
 
Background: 
 
In a previous lab exercise, we created a RegularPolygon class that maintained a large number of 
properties for any polygon of a given number and length of sides. By extending the RegularPolygon 
class to include the capabilities of the DrawingTool class, it is possible to display a graphic representation 
of any polygon. For example, a 9-sided regular polygon (nonagon) would be represented as follows:  
 

 
 
Assignment: 
 
1. Extend the RegularPolygon class created in lab L.A.7.1 to create a GraphicPolygon class. Use 

the following declarations as a starting point for your lab work. 
 

class GraphicPolygon extends RegularPolygon 
{ 
  private DrawingTool pen = new DrawingTool(new SketchPad(400, 400)); 
  private double xPosition, yPosition; 
     
  // constructors 
 
  // Initializes a polygon of numSides sides and sideLength 
  //   length in the superclass. The polygon is centered at 
  //   xPosition = yPosition = 0 
  public GraphicPolygon(int numSides, double sideLength) 
  { 
  }    
 
  // Initializes a polygon of numSides sides and sideLength 
  //   length in the superclass. The polygon is centered at 
  //   xPosition = x and yPosition = y 
  public GraphicPolygon(int numSides, double sideLength, double x, double y) 
  { 
  } 



APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved L.A.14.2 (Page 2) 
 Use permitted only by licensees in accordance 
 with license terms (http://www.ict.org/javalicense.pdf) 

 
 
 
  // public methods 
 
  // Sets xPosition = x and yPosition = y to correspond to the new 
  //   center of the polygon 
  public void moveTo(double x, double y) 
  { 
  } 
 
  // Draws the polygon about the center point (xPosition, yPosition). 
  // Uses properties inherited from RegularPolygon to determine the 
  //   number and length of the sides, the radius of the inscribed circle, 
  //   and the vertex angle with which to draw the polygon 
  public void draw() 
  { 
  } 
}  
    

2. Write two constructor methods. The first constructor initializes the number and length of the sides of a 
polygon centered about the point (0, 0). The Second constructor is used to initialize a polygon a 
specified number and length of sides with a center at a specified x and y location.    

 
3. Write a method that draws the polygon onto the Sketchpad window using the movement and 

drawing methods available in the DrawingTool class.  
 
4. Write a method that moves the center of the polygon to a specified x and y location.   
 
5. Write a testing class with a main() method that constructs a GraphicPolygon and calls each 

method.  Sample usage for a polygon with 9 sides of length 100 would give: 
 

GraphicPolygon gPoly = new GraphicPolygon(9, 100); 
gPoly.draw(); 

 
 
Instructions: 
 
1. Use the following values to test your functions: 
 
 Square:   number of sides = 4, length of side = 150 
 Octagon:   number of sides = 8, length of side = 100 
 Enneadecagon:   number of sides = 19, length of side = 50 
 Enneacontakaihenagon:   number of sides = 91, length of side = 10 
 


