
APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 3 - Data Types in Java

INTRODUCTION: As with most high level languages, Java provides standard data types to store

information. Java is a richly typed language that gives the programmer a wide
variety of data types to use. In this lesson you will declare variables, store values
in them, and print out their values using the System.out object.

The key topics for this lesson are:

A. Identifiers in Java
B. Basic Data Types in Java
C. Declaring and Initializing Variables in Java
D. Printing Variables Using the System.out object
E. ASCII Code Values and Character Data
F. Assignment Statements and Math Operators

VOCABULARY: IDENTIFIER KEYWORDS
int char
boolean double
float String
ESCAPE SEQUENCE TYPE
TYPE CONVERSION ASSIGNMENT STATEMENT
MODULUS ASCII

DISCUSSION: A. Identifiers in Java

1. An identifier is a name that will be used to describe classes, methods,

constants, variables, and other items.

2. The rules for writing identifiers in Java are:

a. Identifiers must begin with a letter.
b. Only letters, digits, or underscore may follow the initial letter.
c. The blank space cannot be used.

See Handout H.A.3.1,
Reserved Words in
Java.

d. Identifiers cannot be reserved words. Reserved words or keywords are
only for system use.

3. Java is a case sensitive language. That is, Java will distinguish between
upper and lower case letters in identifiers. Therefore:

grade and Grade are different identifiers

4. A good identifier should help describe the nature or purpose of that function
or variable. It is better to use

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

grade instead of g, number instead of n.

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. However, avoid excessively long or "cute" identifiers such as:

gradePointAverage or bigHugeUglyNumber

 Remember that our goal is to write code that is easy to read and professional

in nature.

6. Programmers will adopt different styles of using upper and lower case letters

in writing identifiers. The reserved keywords in Java must be typed in lower
case text, but identifiers can be typed using any combination of upper and
lower case letters.

7. The following conventions will be used throughout the curriculum guide:

a. A single word identifier will be written in lower case only. Examples:
grade, number, sum.

b. If an identifier is made up of several words, the first letter will be lower
case. Subsequent words will begin with upper case. Some examples are:
stringType, passingScore, largestNum.

c. Identifiers used as constants will be fully capitalized. Examples: PI,
MAXSTRLEN.

B. Basic Data Types in Java

1. Java provides eight primitive data types: byte, short, int, long, float,

double, char and a boolean. The data types byte, short, int, and
long are for integers, and the data types float and double are for real
numbers.

2. Integer type - any positive or negative number without a decimal point.

a. Examples: 7 -2 0 2025.

3. Floating Point type - any signed or unsigned number with a decimal point.
a. Examples: 7.5 -66.72 0.125 5.
b. A floating point value cannot contain a comma or $ symbol.
c. A floating point value must have a decimal point.
d. Invalid examples: 1,234.56 $66.95 125 7,895
e. Floating point values can be written using scientific notation:
 1625. = 1.625e3 .000125 = 1.25e-4

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

4. The following table summarizes the bytes allocated and the resulting size.

 Size Minimum Value Maximum Value

byte 1 byte -128 127
short 2 bytes -32768 32767
int 4 bytes -2147483648 2147483647
long 8 bytes -9223372036854775808 9223372036854775807
float 4 bytes -3.40282347E+38 3.40282347E+38
double 8 bytes -1.79769313486231570E+308 1.79769313486231570E+308

5. Character type - letters, digits 0..9, and punctuation symbols.

a. Examples: 'A', 'a', '8', '*'
b. Note that a character type must be enclosed within single quotes.

See Handout H.A.3.2,
ASCII Characters - A
Partial List.

c. Java character types are stored using 2 bytes, usually according to the
ASCII code. ASCII stands for American Standard Code for
Information Interchange.

d. The character value 'A' is actually stored as the integer value 65.
Because a capital 'A' and the integer 65 are physically stored in the
same fashion, this will allow us to easily convert from character to integer
types, and vice versa.

e. Using the single quote as a delimiter leads to the question about how to
assign the single quote (') character to a variable. Java provides escape
sequences for unusual keystrokes on the keyboard. Here is a partial list:

Character Java Escape Sequence

Newline '\n'

Horizontal tab '\t'

Backslash '\\'

Single quote '\''

Double quote '\"'

Null character '\0'

6. Data types are provided by high level languages to minimize memory usage

and processing time. Integers and characters require less memory and are
easier to process. Floating-point values require more memory and time to
process.

7. The final primitive data type is the type boolean. It is used to represent a

single true/false value. A boolean value can have only one of two
values:

true false

In a Java program, the words true and false always mean these boolean
values.

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

C. Declaring and Initializing Variables in Java

1. A variable must be declared before it can be initialized with a value. The

general syntax of variable declarations is:

data_type variableName;

for example

int number;
char ch;

2. Variables can be declared near the top of the method or in the midst of

writing code. Variables can also be declared and initialized in one line. The
following example program illustrates these aspects of variable declaration
and initialization.

 Program 3-1

public class DeclareVar
{
 public static void main(String[] args)
 {
 // first is declared and initialized
 // second is just initialized
 int first = 5, second;
 double x;
 char ch;
 boolean done;

 second = 7;
 x = 2.5;
 ch = 'T';
 done = false;

 int sum = first + second;
 }
}

a. Multiple variables can be declared on one line.
b. Initialization is accomplished with an equal (=) sign.
c. Initialization can occur at declaration time or later in the program. The

variable sum was declared and used in the same line.

3. Where the variables are declared is a matter of programming style. Your

instructor will probably have some preferences regarding this matter.

D. Printing Variables Using the System.out Object

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

1. The System.out object is defined in each Java program. It has methods for
displaying text strings and numbers in plain text format on the system display,
which is sometimes referred to as the “console”. For example:

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Program 3-2

public class PrintVar
{
 public static void main(String[] args)
 {
 int number = 5;
 char letter = 'E';
 double average = 3.95;
 boolean done = false;

 System.out.println("number = " + number);
 System.out.println("letter = " + letter);
 System.out.println("average = " + average);
 System.out.println("done = " + done);
 System.out.print("The ");
 System.out.println("End!");
 }
}

Run output:

number = 5
letter = E
average = 3.95
done = false
The End!

2. Method System.out.println displays (or prints) a line of text in the

console window. When System.out.println completes its task, it
automatically positions the output cursor (the location where the next
character will be displayed) to the beginning of the next line in the console
window (this is similar to pressing the Enter key when typing in a text
editor—the cursor is repositioned at the beginning of the next line in your file).

3. The expression

"number = " + number

from the statement

System.out.println("number = " + number);

uses the + operator to “add” a string (the literal "number = ") and number
(the int variable containing the number 5). Java has a version of the +
operator for String concatenation that enables a string and a value of
another data type to be concatenated (added). The result of this operation is a
new (and normally longer) string. String concatenation is discussed in more
detail in the next lesson.

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 8)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

4. The lines

System.out.print("The ");
System.out.println("End!");

of Program 3-2 display one line in the console window. The first statement
uses System.out’s method, print, to display a string. Unlike println,
print does not position the output cursor at the beginning of the next line in
the console window after displaying its argument. The next character
displayed in the console window appears immediately after the last character
displayed with print.

5. Note the distinction between sending a text constant, "number = ", versus a

variable, number, to the System.out object. A boolean variable will be
printed out as its representation of true or false.

E. ASCII Code Values and Character Data

1. As mentioned earlier in section B.5, a character value can easily be

converted to its corresponding ASCII integer value.

2. A character value is stored using two byte of memory, which consists of 16

bits of binary (0 or 1) values.

3. The letter 'A' has the ASCII value of 65, which is stored as the binary value

0000000001000001. This is illustrated in the following program fragment:

char letter = 'A';
System.out.println("letter = " + letter);

System.out.print("its ASCII value = ");
System.out.print((int)letter);

Run output:

letter = A
its ASCII value = 65

 The statement (int)letter is called a type conversion. The data type of
the variable is converted to the outer type inside of the parentheses, if
possible.

4. In Java, you can make a direct assignment of a character value to an integer

variable, and vice versa. This is possible because both an integer and a
character variable are ultimately stored in binary. However, it is better to be
more explicit about such conversions by using type conversions. For
example, the two lines of code below assign to position the ASCII value of
letter.

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 9)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

char letter = 'C'; // ASCII value = 67
int position;

position = letter; // This is legal, position now equals 67

vs.

position = (int)letter; // This is easier to understand.

 More detail about type conversions follows in section F. 9.

F. Assignment Statements and Math Operators

1. An assignment statement has the following basic syntax:

variable = expression;

a. The expression can be a literal constant value such as 2, 12.25, 't'.
b. The expression can also be a numeric expression involving operands

(values) and operators.
c. The = operator returns the value of the expression. This means that the

statement

a = 5;

 assigns 5 to the variable and returns the value 5. This allows for chaining
of assignment operators.

a = b = 5;

 The assignment operator (=) is right-associative. This means that the
above statement is really solved in this order:

a = (b = 5);// solved from right to left.

 Since (b = 5) returns the integer 5, the value 5 is also assigned to
variable a.

2. Java provides 5 math operators as listed below:

+ Addition, as well as unary +
- Subtraction, as well as unary -
* Multiplication
/ Real and integer division
% Modulus, remainder of integer or floating point division

3. The numerical result and data type of the answer depends on the type of

operands used in a problem.

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 10)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

4. For all the operators, if both operands are integers, the result is an integer.
Examples:

2 + 3 = 5 (integer) 9 - 3 = 6 (integer)
4 * 8 = 32 (integer) 11/2 = 5 (integer – Note!)

5. If either of the operands is a float type, the result is a float type. Examples:

2 + 3.000 = 5.000 (float)
25 / 6.75 = 3.7037 (float)
11.0 / 2.0 = 5.5 (float)

a. When an integer and a float are used in a binary math expression, the

integer is promoted to a float value, and then the math is executed.
b. In the example 2 + 3.000 = 5.000, the integer value 2 is promoted to

a float (2.000) and then added to the 3.000.

6. The modulus operator (%) returns the remainder of dividing the first operand
by the second. For example:

10 % 3 = 1 2 % 4 = 2 16 % 2 = 0 27.475 % 7.22 = 5.815

7. Changing the sign of a value can be accomplished with the negation operator
(-), often called the unary (-) operator. A unary operator works with only
one value. Applying the negation operator to an integer returns an integer,
while applying it to a float returns a float value. For example:

-(67) = -67 -(-2.345) = 2.345

8. To obtain the fractional answer to a question like 11/2 = 5.5, a type
conversion must be applied to one of the operands.

(double)11/2 results in 5.5
 11.000/2 then we do division
 5.5

 The type conversion operators are unary operators with the following syntax:

(type) operand

9. There is more to cover regarding operators in Java. Topics such as math
precedence and assignment operators will be covered in a later lesson.

SUMMARY/
REVIEW:

This lesson has covered a great amount of detail regarding the Java language. At
first you will have to memorize the syntax of data types, but with time and
practice, fluency will come.

APCS - Java, Lesson 3 © ICT 2003, www.ict.org, All Rights Reserved O.A3.1 (Page 11)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

ASSIGNMENT: Lab Exercise, L.A.3.1, MathFun
Lab Exercise, L.A.3.2, Easter

