
APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 8 – Structured Programming, Control Structures,
if-else Statements, Pseudocode

INTRODUCTION: This lesson is the first of four covering the standard control structures of a high-

level language. Using such control structures requires the creation of simple to
complex Boolean statements that evaluate to true or false. After covering the
relational and logical operators available in Java, the remainder of this lesson will
present the if-else control structure.

The key topics for this lesson are:

A. Structured Programming
B. Control Structures
C. Algorithm Development and Pseudocode
D. Relational Operators
E. Logical Operators
F. Precedence and Associativity of Operators
G. The if-else Statements
H. Compound Statements
I. Nested if-else Statements
J. Conditional Operator
K. Boolean Identifiers

VOCABULARY: STRUCTURED PROGRAMMING CONTROL STRUCTURE
 ALGORITHM ITERATION
 LOGICAL OPERATOR PSEUDOCODE
 IF-ELSE RELATIONAL OPERATOR
 STEPWISE REFINEMENT COMPOUND STATEMENT
 CONDITIONAL OPERATOR BOOLEAN IDENTIFIER

DISCUSSION: A. Structured Programming

1. Up to this point in your study of computer science and Java, you have created

programs that used only sequential execution. So far most programs have
consisted of a sequence of lines that are executed once, line-by-line. As we
add the power of loops and selection, we need to use these tools in a
disciplined manner.

2. In the early days of programming (1960's), the approach to writing software

was relatively primitive and ineffective. Much of the code was written with
goto statements that transferred program control to another part of the code.
Tracing this type of code was an exercise in jumping from one spot to
another, leaving behind a trail of lines similar to spaghetti. The term

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

"spaghetti code" comes from trying to trace code linked together with goto
statements.

3. The research of Bohm and Jacopini1 has led to the rules of structured
programming. Here are five tenets of structured programming. There are
only three necessary control structures needed to write programs: sequence,
selection, and iteration.

a. No goto statements are to be used in writing code.
b. All programs can be written in terms of three control structures:

sequence, selection, and iteration.
c. Each control structure has one entrance point and one exit point. We will

sometimes allow for multiple exit points from a control structure using the
break statement.

d. Control structures may be stacked (sequenced) one after the other.
e. Control structures may be nested inside other control structures.

4. The control structures of Java encourage structured programming. Staying

within the guidelines of structured programming has led to great productivity
gains in the field of software engineering.

B. Control Structures

See Handout H.A.8.2,
Control Structures in
Java.

1. There are only three necessary control structures needed to write
programs: sequence, selection, and iteration.

2. Sequence refers to the line-by-line execution as used in your programs so far.

The program enters the sequence, does each step, and exits the sequence.

3. Selection is the control structure that allows choice among different

directions. Java provides different levels of selection:

• One-way selection with an if structure
• Two-way selection with an if-else structure
• Multiple selection with a switch structure

4. Iteration refers to looping. JAVA provides three loop structures:

 • while loops
 • do-while loops
 • for loops

5. Of the seven control structures, the if-else and while loop are the most

flexible and powerful for problem-solving. The other control structures have

1 Bohm, C., and G. Jacopini, "Flow Diagrams, Turing Machines, and Languages with Only Two Formation Rules,

"Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336-371."

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

their place, but if-else and while are the most common control structures
used in Java code.

6. The diagrams in H.A.8.2, Control Structures in Java, are flowcharts that
describe the flow of program control. A statement rectangle in any control
structure can be a simple line or even another control structure. A statement
can also be a compound statement that consists of multiple statements.

C. Algorithm Development and Pseudocode

1. An algorithm is a solution to a problem. Computer scientists are in the

problem-solving business. They use techniques of structured programming to
develop solutions to problems. Algorithms will range from the easier "finding
the average of two numbers" to the more difficult "visiting all the
subdirectories on a hard disk, searching for a file."

2. A major task of the implementation stage is the conversion of rough designs

into refined algorithms that can then be coded in the implementation language
of choice.

3. Pseudocode refers to a rough-draft outline of an answer, written in English-

like terms. We will probably use phrases and words that are close to
programming languages, but avoid using any specific language. Once the
pseudocode has been developed, translation into code occurs more easily than
if we had skipped this pseudocode stage.

4. Stepwise refinement is the process of gradually developing a more detailed

description of an algorithm. Problem solving in computer science involves
overall development of the sections of a program, expanding each section
with more detail, later working out the individual steps of an algorithm using
pseudocode, then finally writing a code solution.

See Handout H.A.8.3,
Pseudocode and Algorithm
Development.

5. The handout, H.A.8.3, Pseudocode and Algorithm Development, will
present a thorough example of this process. You should read this now.

D. Relational Operators

1. A relational operator is a binary operator that compares two values. The

following symbols are used in Java as relational operators:

 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
 == equal to
 != not equal to

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 4)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

2. A relational operator is used to compare two values, resulting in a relational
expression. For example:

number > 16 grade == 'F' passing >= 60

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 5)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. The result of a relational expression is a boolean value, true or false.

4. When character data is compared, the ASCII code values are used to

determine the answer. The following expressions result in the answers given:

'A' < 'B' evaluates as true, (65 < 66)
'd' < 'a' evaluates as false, (100 < 97)
't' < 'X' evaluates as false, (116 < 88)

 In the last example, you must remember that upper case letters come first in

the ASCII collating sequence; the lower case letters follow after and
consequently have larger ASCII values than do upper case ('A' = 65, 'a' =
97).

E. Logical Operators

1. The three logical operators of programming are AND, OR, and NOT. These
operators are represented by the following symbols in Java:

 AND &&
 OR || (two vertical bars)
 NOT !

2. The && (and) operator requires both operands (values) to be true for the

result to be true.

 T and T = true
 T and F = false
 F and T = false
 F and F = false

3. The following are Java examples of using the && (and) operator.

 ((2 < 3) && (3.5 > 3.0)) evaluates as true
 ((1 == 0) && (2 != 3)) evaluates as false

 The && operator performs short-circuit evaluation in Java. If the first half of

an && statement is false, the operator immediately returns false without
evaluating the second half.

4. The || (or) operator requires only one operand (value) to be true for the

result to be true.

 T or T = true
 T or F = true
 F or T = true
 F or F = false

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 6)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

5. The following is a Java example of using the || (or) operator.

 ((2+3 < 10) || (21 > 19)) evaluates as true

 The || operator also performs short-circuit evaluation in Java. If the first

half of an || statement is true, the operator immediately returns true without
evaluating the second half.

6. The ! operator is a unary operator that changes a boolean value to its

opposite.

 ! false = true
 ! true = false

F. Precedence and Associativity of Operators

1. Introducing two new sets of operators (relational and logical) adds to the

complexity of operator precedence in Java. An abbreviated precedence
chart is included here.

Operator Associativity

! unary - ++ -- right to left
* / % left to right
+ - left to right
< <= > >= left to right
== != left to right
&& (and) left to right
|| (or) left to right
= += -= *= /= right to left

Table 8-1 Precedence and Associativity of Operators

2. Because the logical operators have low precedence in Java, parentheses are

not needed to maintain the correct order of solving problems. However, they
can be used to make complex expressions more readable.

 ((2 + 3 < 10) && (75 % 12 != 12)) // easier to read
 (2 + 3 < 10 && 75 % 12 != 12) // harder to read

G. The if-else Statements

1. The general syntax of the if-else statement is as follows:

if (expression)
 statement1;
else
 statement2;

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 7)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

2. if statements may omit the else option if it results in one-way selection.

if (expression)
 statement1;

 If the expression is non-zero, statement is executed, otherwise nothing is
executed. The following flowchart illustrates the flow of control.

if structure

true

false

3. The full if-else statement allows for two-way control. If the value of the

expression is true, statement1 is executed. If the value of the expression
equals false, the else option results in statement2 being executed. The
following flowchart from handout, H.A.8.2, illustrates the flow of control.

truefalse

if/else structure

statement 1 statement 2

4. The expression being tested must always be placed in parentheses. This is a

common source of syntax errors.

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 8)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

H. Compound Statements

1. The statement executed in a control structure can be a block of statements,

grouped together into a single compound statement.

2. A compound statement is created by enclosing any number of single
statements by braces as shown in the following example:

if (expression)
{
 statement1;
 statement2;
 statement3;
}
else
{
 statement4;
 statement5;
 statement6;
}

I. Nested if-else Statements

1. The statement inside of an if or else option can be another if-else

statement. Placing an if-else inside another is known as nested if-else
constructions. For example:

if (expression1)
 if (expression2)
 statement1;
 else
 statement2;
else
 statement3;

2. The else option will be paired with the nearest unpaired if. statement2
is the alternative action of the inner if, while statement3 is the alternative
action of the outer if.

3. The above example has three possible different outcomes as shown in the

following chart:

 expression 1 expression2 statement executed

 true true statement1
 true false statement2
 false true statement3
 false false statement3

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 9)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

4. Caution must be shown when using else statements inside of nested if-else
structures. For example:

if (expression1)
 if (expression2)
 statement1;
else
 statement2;

 Indentation is ignored by the compiler, hence it will pair the else statement
with the inner if. If you want the else to get paired with the outer if as the
indentation indicates, you need to add braces:

if (expression1)
{
 if (expression2)
 statement1;
}
else
 statement2;

 The braces allow the else statement to be paired with the outer if.

5. Another alternative to the example in Section 4. makes use of the &&

operator. A pair of nested if statements can be coded as a single compound
&& statement.

if (expression1 && expression2)
 statement1;
else
 statement2;

6. The most common and effective use of nested if-else statements is called

an if-else chain. See the following formatting styles:

 Formatting style 1 Formatting style 2

if (expression1)
 statement1;
else
 if (expression2)
 statement2;
 else
 if (expression3)
 statement3;
 else
 statement4;

if (expression1)
 statement1;
else if (expression2)
 statement2;
else if (expression3)
 statement3;
else
 statement4;

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 10)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

 Notice that each successive if-else statement is buried deeper in the
overall structure. statement4 will only be executed if the first three
expressions are false.

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 11)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

7. Formatting style 1 lines up the if with its counterpart else keyword. This
makes it easy to check syntax but the indentation can get rather deep.
Formatting style 2 is a more compact version but you need to be careful about
which else statement belongs to which if. Formatting style 1 is more
appropriate if the statements are compound statements. Formatting style 2 is
appropriate if the statements are single -line statements.

8. The advantage of such an if-else chain is efficiency in execution. If a

true value is encountered at any level, that statement is executed and the
rest of the structure is ignored.

9. Consider the following example of determining the type of triangle given the

three sides A, B, and C.

if ((A == B) && (B == C))
 System.out.println("Equilateral triangle");
else if ((A == B) || (B == C) || (A == C))
 System.out.println("Isosceles triangle");
else
 System.out.println("Scalene triangle");

 If an equilateral triangle is encountered, the rest of the code is ignored. Such
a chain is best constructed by placing the most demanding case at the top and
the least demanding case at the bottom.

J. Conditional Operator (optional)

1. Java provides an alternate method of coding an if-else statement using the

conditional operator. This operator is the only ternary operator in Java, as it
requires three operands. The general syntax is:

 (condition) ? statement1 : statement2;

2. If the condition is true, statement1 is executed. If the condition is false,

statement2 is executed.

3. This is appropriate in situations where the conditions and statements are fairly

compact.

int max(int a, int b) // returns the larger of two integers
{
 (a > b) ? return a : return b;
}

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved O.A.8.1 (Page 12)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

K. Boolean Identifiers

1. The execution of if-else statements depends on the value of the Boolean

expression. We can use boolean variables to write code that is easier to
read.

2. For example, the boolean variable done could be used to write code that is

more English-like.

 Instead of

if (done == true)
 System.out.println("We are done!");

we can write

if (done)
 System.out.println("We are done!");

3. Using Boolean identifiers with conditional loops allows a separation of solving

expressions from thinking about program control. Here is an example solution
using the while control structure (to be covered in the next lesson),
presented in a blend of Java and pseudocode:

boolean done = false;

while (!done)
 // do some code that could change the value of done

4. Where appropriate you are encouraged to use boolean variables to aid in

program flow and readability.

SUMMARY/
REVIEW:

Control structures are a fundamental part of high level languages. Fluency in any
high level language only comes with practice. You will need to practice control
structures in Java as well as all other aspects of the language.

ASSIGNMENT: Lab Exercise, L.A.8.1, IRS

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved L.A.8.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

IRS

Background:

Federal income tax rates can be calculated using tax rate schedules. The following are tax rates for two
out of the four categories used by the IRS in 2001:

Schedule X - Single

If your taxable income is:

over - but not over - your tax is of the amount over -

 $ 0 $ 27,050 15 % $ 0
 27,050 65,550 $ 4,057.50 + 27.5 % 27,050
 65,550 136,750 $ 14,645.00 + 30.5 % 65,550
 136,750 297,350 $ 36,361.00 + 35.5 % 136,750
 297,350 --------- $ 93,374.00 + 39.1 % 297,350

Schedule Y-1 - Married filing jointly

If your taxable income is:

over - but not over - your tax is of the amount over -

 $ 0 $ 45,200 15 % $ 0
 45,200 109,250 $ 6,780.00 + 27.5 % 45,200
 109,250 166,500 $ 24,393.75 + 30.5 % 109,250
 166,500 297,350 $ 41,855.00 + 35.5 % 166,500
 297,350 --------- $ 88,306.00 + 39.1 % 297,350

To test your understanding, follow this example of a single person with taxable income of $68,000:
 Tax is 14645 + 0.305*(68000-65550) = 14645+745.25 = $15392.25

Assignment:

1. Write a program that:

 a. Prompts the user for the following information:

 Filing status : single or married
 Taxable income

 b. Calculates and prints

 Filing status

APCS - Java, Lesson 8 ©2003, ICT L.A.8.1 (Page 2)

 Taxable income
 Federal tax

APCS - Java, Lesson 8 ©2003, ICT L.A.8.1 (Page 3)

2. Your program should be written using proper modular design and parameter passing. Use the handout
H.A.8.1 as a model. Your instructor will give you more guidelines if you have questions.

3. Example run output:

 Single
 Taxable income = $ 35,125
 Federal tax = $ 6,630.50

Instructions:

1. Complete the working program to the screen and verify the calculations. Use the values given above.

2. Print your source code first, then the run output below it.

3. Use these values for your run output:

 Single, $15,500

 Single, $100,000

 Married, $50,000

 Married, $125,000

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved H.A.8.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

PROGRAMMING POINTERS, LESSON 8

Syntax/correctness issues

8-1 The statement of a control structure can be a single statement, a compound statement marked

out with braces {}, or the empty statement that consists of a semicolon (;).

8-2 The condition for a control structure must be placed within parentheses ().

8-3 Be careful when setting up an equality (==) comparison. A very common mistake is the use of

the assignment operator (=) when equality was intended. Here is a suggestion, when using
comparisons that involve a variable and a value (x == 2), reverse the order (2 == x) to
avoid the subtle error of writing x = 2.

Formatting suggestions

8-4 Use consistent indentation when formatting control structures. Indentation implies hierarchy or

subordination - which statements belong to which control structure. I suggest three blank
spaces per indent.

8-5 When writing expressions with logical and relational operators, add white space around each

operator to make the expression more readable. For example:

 ((number <= 10) && (total <= 1000)) instead of ((number<=10)&&(total<=1000))

Software engineering

8-6 Use pseudocode to develop your solution to a problem. Then convert your pseudocode to

Java code.

8-7 Programs and subprograms can be broken down into three stages: initialization, processing,

and output. When writing a method or an entire program consider this approach:
 1. Initialize some variables
 2. Solve some processing problem, this usually involves developing an algorithm
 3. Return some output to either the screen or to the calling statement of the function.

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved H.A.8.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

8-8 The && operator is also a short-circuit operator in Java. If the first operand of an &&

expression is false, the second condition is not evaluated. Consequently you should write the
expression most likely to be false as the first half of an && expression.

 (expression1 && expression2)

 If expression1 is false, the && operator will ignore processing expression2.

8-9 The || operator is also an efficient operator. You should put the expression most likely to be

true as the first condition of an || expression.

 (expression1 || expression2)

 If expression1 is true, the || operator will ignore processing expression2.

 APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved H.A.8.2 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 CONTROL STRUCTURES IN JAVA

Sequence

Key:

statement entry/exit point decision point

·
·
·

Selection

if structure

if/else structure

·
·
·

break

break

break

switch structure

statement 1 statement 2

true

true

true

true

false

false

false

false

false true

 APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved H.A.8.2 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Repetition

initializ

statement increment/decrement

while structure do-while for structure

APCS - Java, Lesson ©2003, ICT H.A.8.2 (Page 2)

true

false
true

false

true

false

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved H.A.8.3 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

PSEUDOCODE AND ALGORITHM DEVELOPMENT

Description of problem:

The U.S. post office has rules about mailing packages. A package cannot be mailed first class if the sum
of its length and girth is greater than 100 inches, or if the package weighs more than 70 pounds. The girth
is the perimeter around the height and width, where the length is defined as the longest of the three
dimensions.

Write a program that takes in the weight of the package and the three dimensions of the package in any
order. The program should determine the longest dimension of the package, calculate the girth, and
compute the size of the box. The program should then print out one of the following messages about this
package:

1. Package is too large and too heavy.
2. Package is too large.
3. Package is too heavy.
4. Package is acceptable.

Development of pseudocode:

Stepwise refinement 1 - Overall sections of this problem:

Get data from user
Solve math
Print answer

Stepwise refinement 2 - More detailed pseudocode version:

Prompt user for three dimensions
Prompt user for weight

Determine longest of three dimensions
Calculate the girth using the other two dimensions

If package is too big and too heavy, print appropriate message
else if package is too big, print appropriate message
else if package is too heavy, print appropriate message
else print package is acceptable

Stepwise refinement 3 - Determining longest of three dimensions:

My strategy is to end up with dim1 holding the largest value
Compare dim2 and dim1, if dim2 is greater, swap dim1 and dim2, dim1 will be holding largest value
Compare dim3 and dim1, if dim3 is greater, swap dim1 and dim3, dim1 is still holding largest value

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved H.A.8.3 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

Dim1 has largest value, compute math for package

Source code answer for mail problem:

import chn.util.*;

class CheckMail
{
 private int myWeight, myLength, myWidth, myHeight;

 // Here are the constructor methods...
 public CheckMail ()
 {
 myWeight = myLength = myWidth = myHeight = 1;
 }

 public CheckMail(int weight, int length, int width, int height)
 {
 myWeight = weight;
 myLength = length;
 myWidth = width;
 myHeight = height;
 }

 public void dataInput()
 {
 ConsoleIO keyboard = new ConsoleIO();
 int temp = 0;

 System.out.print("Enter the weight --> ");
 myWeight = keyboard.readInt();

 System.out.print("Enter 3 dimensions separated by spaces --> ");
 myLength = keyboard.readInt();
 myWidth = keyboard.readInt();
 myHeight = keyboard.readInt();

 if (myWidth > myLength)
 {
 // swapping values of myWidth and myLength, using third variable temp
 temp = myWidth; myWidth = myLength; myLength = temp;
 }
 if (myHeight > myLength)
 {
 // swapping values of myHeight and myLength, using third variable temp
 temp = myHeight; myHeight = myLength; myLength = temp;
 }
 System.out.println();
 System.out.println();
 }

 // prints out answers
 public void printAnswer()
 {
 int total = myLength + (myWidth*2) + (myHeight*2);
 boolean tooLarge = (total > 100);

APCS - Java, Lesson 8 © ICT 2003, www.ict.org, All Rights Reserved H.A.8.3 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

 boolean tooHeavy = (myWeight > 70);

 System.out.println("Weight = " + myWeight + " lbs");
 System.out.println("Length = " + myLength);
 System.out.print("Other two dimensions = ");
 System.out.println(myWidth + " " + myHeight);
 System.out.println();

 System.out.print(" Package is - ");

 if (tooLarge && tooHeavy)
 System.out.println("too large and too heavy");
 else if (tooLarge && !tooHeavy)
 System.out.println("too large");
 else if (!tooLarge && tooHeavy)
 System.out.println("too heavy");
 else if (!tooLarge && !tooHeavy)
 System.out.println("acceptable");

 System.out.println();
 }

 public static void main(String[] args)
 {
 CheckMail aPackage = new CheckMail ();

 aPackage.dataInput();
 aPackage.printAnswer();
 }

}

