
APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 4 - Simple I/O

INTRODUCTION: Input and output of program data are usually referred to as I/O. There are many
different ways that a Java program can perform I/O (input and output). In this
lesson, we present some very simple ways to handle simple text input typed in at
the keyboard.

The key topics for this lesson are:

A. Reading Input with the ConsoleIO Class
B. Multiple Line Stream Output Expressions
C. Formatting Output
D. String Objects
E. String Input

VOCABULARY: ConsoleIO Format
 String CONCATENATE

DISCUSSION: A. Reading Input with the ConsoleIO Class

1. Some of the programs from the preceding lessons have not been written in

the most efficient manner. To change any of the data values in the programs,
it would be necessary to change the variable initializations, recompile the
program, and run it again. It would be more practical if the program could ask
for new values for each type of data and then compute the desired output.

2. However, accepting user input in Java has some technical complexities.

Throughout this curriculum guide, we will use a special class, called
ConsoleIO, to make processing input easier and less tedious.

3. Just as the System class provides System.out for output, there is an object

for input, System.in. Unfortunately, Java’s System.in object does not
directly support convenient methods for reading numbers and strings.

4. To use the ConsoleIO class in a program, you first need to import from the

chn.util package with the statement

import chn.util.*;

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. To use a ConsoleIO method, you need to construct a ConsoleIO object.

ConsoleIO console = new ConsoleIO();

Next, call one of ConsoleIO methods

See Handout
H.A.4.1, ConsoleIO
Class for a complete
list of input
features.

int n = console.readInt();
double d = console.readDouble();
boolean done = console.readBoolean();
String token = console.readToken();
String line = console.readLine();

6. Here are some example statements:

int num1;
double bigNum;
String line;

num1 = console.readInt();
bigNum = console.readDouble();
line = console.readLine();

When the statement num1 = console.readInt() is encountered,
execution of the program is suspended until an appropriate value is entered on
the keyboard.

7. Any whitespace (spaces, tabs, newline) will separate input values. When

reading values, white space keystrokes are ignored. If it is desirable to input
both whitespace and non-whitespace characters, the method readLine() is
required.

8. The readToken() method reads and returns the next token from the current

line. A token is a String of characters separated by the specified delimiters
(whitespace). For example when the following code fragment is executed

String input = console.readToken();
System.out.print(input);

when given an input line of

twenty-three is my favorite prime number

would output

twenty-three

since this is the first string of characters read before a whitespace value
(space) is encountered.

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

9. When requesting data from the user via the keyboard, it is good programming
practice to provide a prompt. An unintroduced input statement leaves the
user hanging without a clue of what the program wants. For example:

System.out.print("Enter an integer --> ");
number = console.readInt();

B. Multiple Line Output Expressions

1. We have already used examples of multiple output statements such as:

System.out.println("The value of sum = " + sum);

2. There will be occasions when the length of an output statement exceeds one
line of code. This can be broken up several different ways.

System.out.println("The sum of " + num1 + " and " + num2 +
 " = " + (num1 + num2));

or

System.out.print("The sum of " + num1 + " and " + num2);
System.out.println(" = " + (num1 + num2));

3. You cannot break up a String constant and wrap it around a line. This is

not valid:

System.out.print("A long string constant must be broken
up into two separate quotes. This will NOT work.");

 However, this will work:

System.out.print("A long string constant must be broken up"
 + "into two separate quotes. This will work.");

C. Formatting Output

1. Formatting output in Java has some technical complexities. Throughout this

curriculum guide, we will use a special class, called Format, to format
numerical and textual values for a properly aligned output display.

2. The Format methods are available by including the import directive,

import apcslib.*;

at the top of the source code.

3. The basic idea of formatted output is to allocate the same amount of space

for the output values and align the values within the allocated space. The

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

space occupied by an output value is referred to as the field and the number
of character allocated to a field is its field width.

4. To format an integer you would use the following expressions:

See Handout
H.A.4.2, Format
Class for a complete
list of formatting
features.

Format.left(int_expression, fieldWidth);
Format.center(int_expression, fieldWidth);
Format.right(int_expression, fieldWidth);

where int_expression is an arithmetic expression whose value is an int
and fieldWidth designates the field width. Example:

int i1 = 1234;
int i2 = 567;
int i3 = 891011;

System.out.println(Format.left(i1, 15) + "left");
System.out.println(Format.center(i2, 15) + "center");
System.out.println(Format.right(i3, 15) + "right");

Run output:

1234 left
 567 center
 891011right

5. The same type of format statements can be used for a String value.

Format.left(String_expression, fieldWidth);
Format.center(String_expression, fieldWidth);
Format.right(String_expression, fieldWidth);

where String_expression is an expression that evaluates to a String
and fieldWidth designates the field width. Example:

String s1 = "left";
String s2 = "center";
String s3 = "right";

System.out.println(Format.left(s1, 15) + "String");
System.out.println(Format.center(s2, 15) + "String");
System.out.println(Format.right(s3, 15) + "String");

Run output:

left String
 center String
 rightString

6. To format a real number (float or double) we need additional arguments
to specify the decimal places:

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Format.left(real_expression, fieldWidth, decimalPlaces);
Format.center(real_expression, fieldWidth, decimalPlaces);
Format.right(real_expression, fieldWidth, decimalPlaces);

where real_expression is an arithmetic expression whose value is either
a float or a double and decimalPlaces designates the number of digits
shown to the right of the decimal point. The value for fieldWidth must be
at least as large as the value of decimalPlaces plus two. Example:

double d1 = -123.4e-5;
double d2 = 678.9;
double d3 = 12345.6789;

System.out.println(Format.left(d1, 15, 6) + "left");
System.out.println(Format.center(d2, 15, 3) + "center");
System.out.println(Format.right(d3, 15, 2) + "right");

Run output:

-0.001234 left
 678.900 center
 12345.68right

D. String Objects

1. Next to numbers, strings are the most important data type that most

programs use. A string is a sequence of characters such as "Hello". In Java,
strings are enclosed in quotation marks, which are not themselves part of the
string.

2. String objects can be constructed in two ways:

String name = "Bob Binary";
String anotherName = new String("Betty Binary");

Due to the usefulness and frequency of use of strings, a shorter version
without the keyword new, was developed as a short-cut way of creating a
String object. This creates a String object containing the characters
between quote marks, just as before. A String created in this method is
called a String literal. Only Strings have a short-cut like this. All other
objects are constructed by using the new operator.

3. Assignment can be used to place a different string into the variable.

name = "Boris";
anotherName = new String("Bessy");

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

4. The number of characters in a string is called the length of the string. For
example, the length of "Hello World!" is 12. You can compute the length of a
String with the length method.

int n = name.length();

Unlike numbers, strings are objects. Therefore, you can call methods on
strings. In the above example, the length of the String object name is
computed with the method call name.length().

5. A String of length zero, containing no characters, is called the empty string

and is written as "". For example:

String empty = "";

6. Programmers often make one String object from two strings with the
+ operator, which concatenates (connects) two or more strings into one
string. Concatenation and these string messages are illustrated below.

public class DemoStringMethods
{
 public static void main(String[] args)
 {
 String a = new String("Any old");
 String b = " String";
 String aString = a + b; // aString is "Any old String"

 // Show string a
 System.out.println("a: " + a);

 // Show string b
 System.out.println("b: " + b);

 // Show the result of concatenating a and b
 System.out.println("a + b: " + aString);

 // Show the number of characters in the string
 System.out.println("length: " + aString.length());
 }
}

Run output:

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

a: Any old
b: String
a + b: Any old String
length: 14

7. Notice that using strings in the context of input and output statements is
identical to using other data types.

8. The String class will be covered in depth in a later lesson. For now you will

use strings for simple input and output in programs.

E. String Input

1. The ConsoleIO class has two methods for reading textual input from the

keyboard.

2. The readToken message returns a reference to a String object that has
from zero to many characters typed by the user at the keyboard. A token is a
sequence of printable characters separated from the next word by white
space. White space is defined as blank spaces, tabs, or newline characters in
the input stream. White space separates ints and doubles on input. White
space also separates words on input. When input from the keyboard,
readToken stops adding text to the String object when the first white
space is encountered on the input stream from the user.

3. A readLine message returns a reference to a String object that contains
from zero to many characters entered by the user. With readLine, the
String object may contain blank spaces and tabs. The newline marker is not
included. It is discarded from the input stream.

4. Input from these string messages is illustrated below.

import chn.util.*;

public class DemoStringInput
{
 public static void main(String[] args)
 {
 ConsoleIO keyboard = new ConsoleIO();
 String word1, word2, anotherLine;

 // ask for input from the keyboard
 System.out.print("Enter a line: ");

 // grab the first "word"
 word1 = keyboard.readToken();

 // grab the second "word"
 word2 = keyboard.readToken();

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved O.A.4.1(Page 8)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 // ask for input from the keyboard
 System.out.print("Enter another line: ");

 // discard any remaining input from previous line
 // and read the next line of input
 anotherLine = keyboard.readLine();

 // output the strings
 System.out.println("word1 = " + word1);
 System.out.println("word2 = " + word2);
 System.out.println("anotherLine = " + anotherLine);
 }
}

Run output:

Enter a line: Hello World! This will be discarded.
Enter another line: This line includes whitespace.
word1 = Hello
word2 = World!
anotherLine = This line includes whitespace.

SUMMARY/
REVIEW:

These two classes, ConsoleIO and Format, will be used in many programs.
The labs in this lesson will provide an opportunity to practice using simple I/O and
formatting.

ASSIGNMENT: Lab Exercise, L.A.4.1, Change
 Lab Exercise, L.A.4.2, CarRental

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved L.A.4.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Change

Background:

Some cash register systems use change machines that automatically dispense coins. This lab will
investigate the problem solving and programming behind such machinery. You should use integer
mathematics to solve this problem.

You will need to extract the amount of cents from dollar amounts expressed in real numbers. This will
require using the type cast operator and dealing with the approximate nature of real number storage. Here
is an important example:

double purchaseAmount, cashPaid, temp;
int change;

... data input stuff

temp = cashPaid - purchaseAmount;
temp = temp - (int)temp;
change = (int) (temp * 100);

Example Values:

8.06 = 30.00 - 21.94
0.06 = 8.06 - 8
6 = (int)(0.06 * 100)

However, when the above example was run on a computer, the answer of 5 was given. Because real
numbers are stored as approximations, the value of 0.06 was actually something like 0.05999998.
Because the type conversion of (int)(0.05999998 * 100) will truncate the fractional part, the
result is erroneously 5. We need to make a minor adjustment to the second line:

double purchaseAmount, cashPaid, temp;
int change;

... data input stuff

temp = cashPaid - purchaseAmount;
temp = temp - (int)temp + 0.00001;
change = (int)(temp * 100);

Example Values:

8.06 = 30.00 - 21.94
0.06000998 = 8.05999998 - 8 + 0.00001
6 = (int)(0.06000998 * 100)

Assignment:

1. Write a program that does the following:

 a. Prompts the user for the following information.

 Amount of purchase
 Amount of cash tendered

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved L.A.4.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

b. Calculates and prints out the coinage necessary to make correct change. Do not solve the amount
of bills required in the change amount.

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved L.A.4.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. Sample run output:

Amount of purchase = 23.06

Cash tendered = 30.00

Amount of coins needed:

 94 cents =

 3 quarters
 1 dime
 1 nickel
 4 pennies

3. Include appropriate documentation in your program.

4. You are encouraged, but not required, to use the formatting tools in apcslib.

5. Do not worry about singular versus plural endings, i.e. quarter/quarters.

Instructions:

1. Complete and run the program and verify the calculations. Use the values given on page one.

2. When it comes time to save the run output, cut and paste the run output to your source code, but do

not include user prompts. Only copy the relevant answer section of the run output window.

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved L.A.4.2 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Car Rental

Background:

When you rent a car from an agency, the key ring has several pieces of information: license plate, make
and year of car, and usually a special code. This code could be used for some data processing within the
company's computers. This lab will practice determining that special car rental code from the license
plate.

Assignment:

1. The following sequence of steps will be used to convert a license plate into a car rental code.

a. A license plate consists of 3 letters followed by a 3 digit integer value.

b. Type in the license plate information as 3 characters followed by a single integer value. For

example, CPR 607.

c. Add up the ASCII values of the 3 letters, 67 + 80 + 82 = 229.

d. Add the sum of the letters to the single integer value. For example, 229 + 607 = 836.

e. Take this sum (836) and determine the integer remainder after dividing by 26:
 836 % 26 = 4.

f. Determine the 4th letter in the alphabet after the letter 'A': 4th letter after 'A' = E.

g. Combine the letter and the sum, the car id number for license plate
 CPR 607 = E836.

2. You may assume that all sample data will be in the format of 3 alphabet characters, then a space,

followed by a 3 digit integer.

Instructions:

1. Prompt the user for the make and model of the car. Use strings to create this part.

2. Prompt the user for the license plate.

3. Print the run output in this format.

Make = Chevrolet
Model = Suburban

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved L.A.4.2 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

CPR 607 = E836

4. Solve the following run outputs:

RJK 492
SPT 309

The input values for the make and model strings are your choice.

5. Turn in your source code and two run outputs.

ConsoleIO CLASS SPECIFICATIONS

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved H.A.4.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

These classes are not part of Java but are available through the library named chn.util. You must have
the file chnutil.jar in the appropriate directory where Java can access it. To have these classes
available in your program, use this command:

import chn.util.*;

Other features of chn.util will be covered in later lessons.

ConsoleIO

protected String delimeters
protected java.io.BufferedReader in
protected java.util.StringTokenizer tokesn

<<constructors>>

ConsoleIO()
ConsoleIO(String delims)

<<accessors>>

public boolean readBoolean()
public double readDouble()
public int readInt()
public String readLine()
public String readToken()

<<modifiers>>

...

Constructor Methods

public ConsoleIO()

postcondition
Constructs the ConsoleIO object with default delimiters, space, tab, formfeed.

public ConsoleIO (String delims)

postcondition
Constructs the ConsoleIO object with given delimiters.

ConsoleIO CLASS SPECIFICATIONS

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved H.A.4.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Accessor Methods

public boolean readBoolean()

Reads and returns the next boolean from the current line. If the current input line has no more
unread tokens, reads the first token from the first non-empty line entered. A valid boolean is any
token. The value true is returned if the token is "true", with upper or lower case letters, otherwise false
is returned.

postcondition
returns the next boolean from input.

public double readDouble()

Reads and returns the next double from the current line. If the current input line has no more unread
tokens, reads the first token from the first non-empty line entered. If the next token is not the correct
format for a double, then a error message is printed and the program terminates.

postcondition
returns the next double from input.

public int readInt()

Reads and returns the next integer from the current line. If the current input line has no more unread
tokens, reads the first token from the first non-empty line entered. If the next token is not the correct
format for an integer, then a error message is printed and the program terminates.

postcondition
returns the next integer from input.

public String readLine()

Flushes any remaining tokens on the current input line, then reads the next full line input as a String
and returns it.

postcondition
returns the next line read as a String.

public String readToken()

Reads and returns the next token from the current line. A token is a String of characters separated
by the specified delimiters. If the current input line has no more unread tokens, reads the first token
from the first non-empty line entered.

postcondition
returns the next String token from input, as determined by delimiters

ConsoleIO CLASS SPECIFICATIONS

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved H.A.4.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

.

Format CLASS SPECIFICATIONS

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved H.A.4.2 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

These classes are not part of Java but are available through the library named apcslib. You must have
the file apcslib.jar in the appropriate directory where Java can access it. To have these classes
available in your program, use this command:

import apcslib.*;

Other features of apcslib will be covered in later lessons.

Format

<<constructors>>

...

<<accessors>>

public static String center(double d,
 int fWidth,
 int dPlaces)
public static String center(long l, int fWidth)
public static String center(String s, int fWidth)
public static String left(double d,
 int fWidth,
 int dPlaces)
public static String left(long l, int fWidth)
public static String left(String s, int fWidth)
public static String right(double d,
 int fWidth,
 int dPlaces)
public static String right(long l, int fWidth)
public static String right(String s, int fWidth)

<<modifiers>>

...

Accessor Methods

public static String center(double d, int fWidth, int dPlaces)

postcondition
returns a String representing the double d centered in a field of fWidth rounded to dPlaces.

public static String center(long l, int fWidth)

postcondition
returns a String representing the long l centered in a field of fWidth.

Format CLASS SPECIFICATIONS

APCS – Java, Lesson 4 © ICT 2003, www.ict.org, All Rights Reserved H.A.4.2 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

public static String center(String s, int fWidth)

postcondition
returns a String representing the String s centered in a field of fWidth.

public static String left(double d, int fWidth, int dPlaces)

postcondition
returns a String representing the double d adjusted to the left in a field of fWidth rounded to
dPlaces.

public static String left long l, int fWidth)

postcondition
returns a String representing the long l adjusted to the left in a field of fWidth.

public static String left(String s, int fWidth)

postcondition
returns a String representing the String s adjusted to the left in a field of fWidth.

public static String right(double d, int fWidth, int dPlaces)

postcondition
returns a String representing the double d adjusted to the right in a field of fWidth rounded to
dPlaces.

public static String right(long l, int fWidth)

postcondition
returns a String representing the long l adjusted to the right in a field of fWidth.

public static String right(String s, int fWidth)

postcondition
returns a String representing the String s adjusted to the right in a field of fWidth.

