
APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 6 – Defining and Using Classes

INTRODUCTION: The previous lessons have discussed how to use objects and their methods. But
all the objects have been created using a class from one of the Java libraries or
curriculum supplied classes. This lesson discusses how to define your own classes
and objects.

The key topics for this lesson are:

A. Designing a Class
B. Determining Object Behavior
C. Instance Variables
D. Implementing Methods
E. Constructors
F. Using Classes

VOCABULARY: ATTRIBUTES ACCESS SPECIFIER

BEHAVIORS CONSTRUCTOR
ENCAPSULATION INSTANCE VARIABLE

 METHOD CALLS OVERLOADED
 REFERENCE

DISCUSSION: A. Designing a Class

1. One of the advantages of object-oriented design is it allows a programmer to

create a new abstract data type that is reusable in other situations

2. When designing a new data type, two components must be identified -

attributes and behaviors.

3. Consider the icons used in computer operating systems. The attributes that

describe the icon are things like a graphic pattern, colors, size, name, and its
position on the screen. Some of its behaviors include changing color and
moving its position.

4. The attributes of an object are the nouns that describe that object. For

example, in our checking account example below, the attributes are “current
balance” and “account number”. These will become the private data
members of a class.

5. The behaviors of an object are the verbs that denote the actions of that object

or what it does. For example, in our checking account example below,
behaviors are “accept a deposit”, “process a check”, etc. These will become

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

the member functions of a class. In a Java program, behaviors of an object
are described by methods.

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

B. Determining Object Behavior

1. In this section, you will learn how to create a simple class that describes the

behavior of a bank account. Before you start programming, you need to
understand how the objects of your class behave. Operations that can be
carried out with a checking account could consist of:

− Accept a deposit
− Withdraw from the account
− Get the current balance

2. In Java, these operations are expressed as method calls. For example,

assume we have an object checking of type CheckingAccount. The
methods that invoke the required behaviors

checking.deposit(1000)
checking.withdraw(250)
System.out.println("Balance: " + checking.getBalance());

 are represented by the set of methods

− deposit
− withdraw
− getBalance

 These methods form the behavior of the CheckingAccount class. The

behavior is the complete list of the methods that you can apply to objects of a
given class. An object of type CheckingAccount can be viewed as a “black
box” that can carry out its methods.

3. To construct objects of the CheckingAccount class, it is necessary to

declare an object variable

CheckingAccount checking;

Object variables such as checking are references to objects. Instead of
holding an object itself, a reference variable holds the information necessary
to find the object in memory.

4. This object variable checking does not refer to any object at all. An
attempt to invoke a method on this variable would cause the compiler to
generate an error indicating that the variable had not been initialized. To
initialize the variable, it is necessary to create a new CheckingAccount
object using the new operator

checking = new CheckingAccount();

This call creates a new object and returns a reference to the newly created
object. To use an object, you must assign that reference to an object variable.

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. We will implement (that is, create and write the code for) the
CheckingAccount object so that the account has an initial balance of
1000.0 dollars.

// open a new account
double initialDeposit = 1000.0;
CheckingAccount checking = new CheckingAccount();

// set initial balance to 1000.0
checking.deposit(intialDeposit);

Figure 6-1. Creating a New Object

6. Objects of the CheckingAccount class can be used to carry out meaningful

tasks without knowing how the CheckingAccount objects store their data
or how the CheckingAccount methods do their work. This is an important
aspect of object-oriented programming.

7. Once we understand how to use objects of the CheckingAccount class, it

is possible to design a Java class that implements its behaviors. To describe
object behavior, you first need to implement a class, and then implement
methods within that class.

public class CheckingAccount
{
 // CheckingAccount data

 // CheckingAccount constructors

 // CheckingAccount methods
}

 Next we implement the three methods that have already been identified:
− deposit
− withdraw
− getBalance

public class CheckingAccount
{
 // CheckingAccount data

 // CheckingAccount constructors

CheckingAccount

 myBalance 1000.0
checking

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 public void deposit(double amount)
 {
 // method implementation
 }

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 public void withdraw(double amount)
 {
 // method implementation
 }

 public double getBalance()
 {
 // method implementation
 }

}

8. A method header consists of the following parts:

access_specifier return_type method_name (parameters)

a. An access_specifier (such as public). The access specifier
controls which other methods can call this method. Most methods should
be declared as public so all other methods in your program can call them.

b. The return_type of the method (such as double or void). The return

type is the type of the value that the method computes. For example, in
the CheckingAccount class, the getBalance method returns the
current account balance, which is a floating-point number, so its return
type is double. The deposit and withdraw methods don’t return any
value. To indicate that a method does not return a value, you use the
special type void.

c. The method_name (such as deposit).

d. A list of the parameters of the method. The parameters are the input to

the method. The deposit and withdraw methods each have one
parameter, the amount of money to deposit or withdraw. The type of
parameter, such as double, and name for each parameter, such as
amount, must be specified. If a method has no parameters, like
getBalance, it is still necessary to supply a pair of parentheses ()
behind the method name.

9. Once the method header has been specified, the implementation of the

method must be supplied in a block that is delimited by braces {...}. The
CheckingAccount methods will be implemented later in Section D.

C. Instance Variables

1. Each object must store its current state. The state is the set of values that

describe the object and that influence how an object reacts to method calls. In
the case of our checking account objects, the state is the current balance and
an account identifier.

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. Each object stores its state in one or more instance variables.

public class CheckingAccount
{
 ...
 private double myBalance;
 private String myAccountNumber;

 // CheckingAccount methods
}

3. An instance variable declaration consists of the following parts:

access_specifier type variable_name

a. An access_specifier (such as private). Instance variables are

generally declared with the access specifier private. That means they
can be accessed only by methods of the same class, not by any other
method. In particular, the balance variable can be accessed only by the
deposit, withdraw, and getBalance methods.

b. The type of the variable (such as double).
c. The variable_name (such as myBalance).

Figure 6-2. Instance Variables

4. If instance variables are declared private, then all data access must occur

through the public methods. This means that the instance variables of an
object are effectively hidden from the programmer who only uses a class.
They are available only to the programmer who implements the class, that is,
the one who writes or revises the methods. The process of hiding data is
called encapsulation. Although it is possible in Java to define instance
variables as public (leave them unencapsulated), it is very uncommon in
practice. We will always make instance variables private in this curriculum
guide.

5. For example, because the myBalance instance variable is private, it

cannot be accessed in other code:

double balance = checking.mybalance; // compiler ERROR!

CheckingAccount

 0
checking

myBalance

"A23456
"

myAccountNumber

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 8)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

However, the public getBalance method to inquire about the balance can
be called:

double balance = checking.getBalance(); // OK

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 9)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

D. Implementing Methods

1. An implementation must be provided for every method of the class. The

implementation for three methods of the CheckingAccount class is given
below.

public class CheckingAccount
{
 private double myBalance;
 private String myAccountNumber;

 public double getBalance()
 {
 return myBalance;
 }

 public void deposit(double amount)
 {
 myBalance = myBalance + amount;
 }

 public void withdraw(double amount)
 {
 myBalance = myBalance – amount;
 }
}

2. The implementation of the methods is straightforward. When some amount of
money is deposited or withdrawn, the balance increases or decreases by that
amount.

3. The getBalance method simply returns the current balance. A return

statement obtains the value of a variable and exits the method immediately.
The return value becomes the value of the method call expression. The
syntax of a return statement is:

return expression;

or

return; // Exits the method without bringing back a value

E. Constructors

1. The final requirement to implement the CheckingAccount class is to define

a constructor, whose purpose is to initialize the values of instance variables
of an object.

public class CheckingAccount
{
 ...

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 10)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 public CheckingAccount() // constructor
 {
 myBalance = 0;
 myAccountNumber = "NEW";
 }
 ...
}

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 11)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. Constructors always have the same name as their class. Similar to methods,
constructors are generally declared as public to enable any code in a program
to construct new objects of the class. Unlike methods, constructors do not
have return types.

3. Constructors are always invoked together with the new operator:

new CheckingAccount();

The new operator allocates memory for the objects, and the constructor
initializes it. The value of the new operator is the reference to the newly
allocated and constructed object.

In most cases, you want to declare and store a reference to an object in an
object variable as follows:

CheckingAccount checking = new CheckingAccount();

4. If you do not initialize an instance variable that is a number, it is initialized
automatically to zero. Even though, initialization is handled automatically for
instance variables, it’s a matter of good style to initialize all instance variables
explicitly.

5. Many classes have more than one constructor. For example, you can supply a
second constructor for the CheckingAccount class that sets the
myBalance and accountNumber instance variables to initial values, which
are the parameters of the constructor:

public class CheckingAccount
{
 ...

 public CheckingAccount() // constructor defines values
 {
 myBalance = 0;
 myAccountNumber = "NEW";
 }

 public CheckingAccount(double initialBalance, String acctNum)
 // contructor gets values elsewhere
 {
 myBalance = initialBalance;
 myAccountNumber = acctNum;
 }
 ...
}

The second constructor is used if you supply a number and a string as
construction parameters.

CheckingAccount checking = new CheckingAccount(5000, "A123");

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 12)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

6. Note that in the above example there are two constructors of the same name.
Whenever you have multiple methods (or constructors) with the same name,
the name is said to be overloaded. The compiler figures out which one to call
by looking at the parameters of each method.

For example, if you construct a new checkingAccount object with

CheckingAccount checking = new CheckingAccount();

then the compiler picks the first constructor. If you construct an object with

CheckingAccount checking = new CheckingAccount(5000, "A123");

then the compiler picks the second constructor.

7. The implementation of the CheckingAccount class is complete and is given

below:

public class CheckingAccount
{
 private double myBalance;
 private String myAccountNumber;

 public CheckingAccount()
 {
 myBalance = 0;
 myAccountNumber = "NEW";
 }

 public CheckingAccount(double initialBalance, String acctNum)
 {
 myBalance = initialBalance;
 myAccountNumber = acctNum;
 }

 public double getBalance()
 {
 return myBalance;
 }

 public void deposit(double amount)
 {
 myBalance = myBalance + amount;
 }

 public void withdraw(double amount)
 {
 myBalance = myBalance – amount;
 }
}

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 13)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

F. Using Classes

1. Using the CheckingAccount class is best demonstrated by writing a

program that solves a specific problem. We want to study the following
scenario:

A interest bearing checking account is created with a balance of $1,000.
For two years in a row, add 2.5% interest. How much money is in the
account after two years?

2. Two classes are required: the CheckingAccount class that was developed

in the preceding sections, and a second class called CheckingTester. The
main method of the CheckingTester class constructs a
CheckingAccount object, adds the interest twice, then prints out the
balance.

class CheckingTester
{
 public static void main(String[] args)
 {
 CheckingAccount checking =
 new CheckingAccount(1000,"A123");

 final double INTEREST_RATE = 2.5;
 double interest;

 interest = checking.getBalance() * INTEREST_RATE / 100;
 checking.deposit(interest);

 System.out.println("Balance after year 1 is $"
 + checking.getBalance());

 interest = checking.getBalance() * INTEREST_RATE / 100;
 checking.deposit(interest);

 System.out.println("Balance after year 2 is $"
 + checking.getBalance());
 }
}

3. The classes can be distributed over multiple files or kept together in a single
file. If kept together, the class with the main method must be declared as
public. The public attribute cannot be specified for any other class in the
same file since a Java source file can contain only one public class.

4. Care must be taken to ensure that the name of the file matches the name of

the public class. For example, a single file containing both the
CheckingAccount class and the CheckingTester class must be
contained in a file called CheckingTester.java, not
CheckingAccount.java.

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 14)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

SUMMARY/
REVIEW:

The topics in this lesson are critical in your study of computer science. The
concepts of abstraction and object-oriented programming (OOP) will continue to
be developed in future lessons. Before you solve the lab exercise, you are
encouraged to play with the CheckingAccount class and implement objects
using all the behaviors of the class.

ASSIGNMENT: Lab Exercise, L.A.6.1, MPG
Lab Exercise, L.A.6.2, Rectangle

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

MPG

Background:

1. Professional programmers carefully design the classes they need before any coding is done. With

well-designed classes, programming is much easier and the program has fewer bugs. Object-oriented
design consists of deciding what classes are needed, what data they will hold, and how they will
behave. All these decisions are documented (written up) and then examined. If something doesn't look
right, it is fixed before any programming is done.

2. The specifications of a class that models the fuel efficiency of a car would be:

Variables
int myStartMiles; // Starting odometer reading
int myEndMiles; // Ending odometer reading
double myGallonsUsed; // Gallons of gas used between the readings

Constructors

// Creates a new instance of a Car object with the starting
// odometer readings.
Car(int odometerReading)

Methods

// Simulates filling up the tank. Record the current odometer reading
// and the number of gallons to fill the tank
void fillUp(int odometerReading, double gallons)

// Calculates and returns the miles per gallon for the car.
double calculateMPG()

Assignment:

1. Implement a Car class with the following properties.

a. A Car keeps track of the start odometer reading, ending odometer reading, and the number of
gallons used between readings.

b. The initial odometer reading is specified in the constructor

c. A method calculateMPG calculates and returns the mile per gallon for the car..

d. A method fillup simulates filling up the tank at a gas station: odometerReading is the current
odometer reading and gallons is the number of gallons that filled the tank. Save these values in
instance variables.

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

e. With this information, miles per gallon can be calculated. Write the method so that it updates the
instance variables each time it is called (simulating another visit to the pumps). After each call,
calculateMPG will calculate the latest miles per gallon.

2. Write a testing class with a main method that constructs a car and calls fillUp and calculateMPG
a few times. Sample usage would be

Car auto = new Car(15); // initial odometer reading of 15 miles
auto.fillUp(250, 10); // odometer is at 250 miles
 // fillup with 10 gallons of gas
 // repeat auto.fillup line for additional fillups

System.out.println(auto.calculateMPG()) // print miles per gallon

3. Write a testing class with a main method that constructs a car and calls fillUp and calculateMPG

a few times. A sample run of the program would give (values in bold italics represent input from the
user):

New car odometer reading: 15

Filling Station Visit
 odometer reading: 250
 gallons to fill tank: 10

Miles per gallon: 23.50

Filling Station Visit
 odometer reading: 455
 gallons to fill tank: 12.5

Miles per gallon: 16.40

4. Format the output as shown. Miles per gallon should be rounded to 2 decimal places.

5. Turn in the source code with the run output attached. It is recommended that the Car class and the

testing class be combined in one source file (MilesPerGallon.java)

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.2 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

RECTANGLE

Background:

1. Professional programmers carefully design the classes they need before any coding is done. With

well-designed classes, programming is much easier and the program has fewer bugs. Object-oriented
design consists of deciding what classes are needed, what data they will hold, and how they will
behave. All these decisions are documented (written up) and then examined. If something doesn't look
right, it is fixed before any programming is done.

2. The specifications of a class that models a rectangular shape would be:

Variables
private double myX; // the x coordinate of the rectangle
private double myY; // the y coordinate of the rectangle
private double myWidth; // the width of the rectangle
private double myHeight; // the height of the rectangle

// Creates a 500 x 500 SketchPad with a DrawingTool, pen, that is used
// to display Rectangle objects. The Drawingtool is declared static
// so that multiple Rectangle objects can be drawn on the Sketchpad
// at the same time.
private static DrawingTool pen =
 new DrawingTool(new SketchPad(500, 500));

Constructors

// Creates a default instance of a Rectangle object with all dimensions
// set to zero.
Rectangle()

// Creates a new instance of a Rectangle object with the left and right
// edges of the rectangle at x and x + width. The top and bottom edges
// are at y and y + height.
Rectangle(double x, double y, double width, double height)

Methods

// calculates and returns the perimeter of the rectangle
public double getPerimeter()

// Calculates and returns the are of the rectangle.
public double getArea()

// Draws a new instance of a Rectangle object with the left and right
// edges of the rectangle at x and x + width. The top and bottom edges
// are at y and y + height.
public void draw()

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.2 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Assignment:

1. Implement a Rectangle class with the following properties.

a. A Rectangle object is specified in the constructor with the left and right edges of the rectangle
at x and x + width. The top and bottom edges are at y and y + height.

b. A method getPerimeter calculates and returns the perimeter of the Rectangle.

c. A method getArea calculates and returns the area of the Rectangle.

d. A method draw displays a new instance of a Rectangle object. Refer to handout, H.A.1.1 –
DrawingTool, for details on DrawingTools methods.

2. Write a testing class with a main method that constructs a Rectangle and calls getPerimeter and
getArea for each Rectangle created. Sample usage would be:

// Construct a 400 x 160 rectangle at location -200, -80.
Rectangle rectA = new Rectangle(-200, -80, 400, 160);

 rectA.draw(); // draw the rectangle

 System.out.println("Perimeter = " + rectA.getPerimeter());
 System.out.println("Area = " + rectA.getArea());

The resulting images would be similar to the one shown below:

3. Construct a 3x3 grid of Rectangle objects as show below. You should be able to produce the grid

with only 3 rectangles. In addition, calculate and display the perimeter and area of the rectangles.

4. Turn in the source code with the run output attached. It is recommended that the Rectangle class

and the testing class be combined in one source file (RectangleTest.java).

