
APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved O.A.19.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 19 – Single Dimension Arrays

INTRODUCTION: Programs often need a way to work with large amounts of data without declaring
thousands of scalar variables. In this lesson we explain the terms data structure
and algorithm, and then introduce you to a very important data structure, the
array. With each new data structure comes the complementary algorithms to
manipulate the data it stores. This combination of data structures and algorithms
provide the powerful tools needed to solve computer science problems.

The key topics for this lesson are:

A. Data Structures and Algorithms
B. Example of an Array
C. Array Declarations and Memory Allocation
D. Applications of Arrays
E. Arrays as Parameters
F. Arrays and Algorithms

VOCABULARY: DATA STRUCTURE ALGORITHM
 TRAVERSAL ARRAY
 SEQUENTIAL RANDOM ACCESS

INDEX final

DISCUSSION: A. Data Structures and Algorithms

1. A scalar type is a simple data type that holds one value at a time. The data

types int, double, char, and boolean are important and useful, but
limited.

2. A data structure is a collection of scalar data types that are all referenced or

accessed through one identifier.

3. Data structures can be created to store information about any real-world

situation:
a. Your high school transcript is a collection of grades.
b. The English paper you wrote on a word processor is stored as a

collection of characters, punctuation, and formatting codes.
c. Your name, address, and phone number can be stored as a collection of

strings.

4. After defining a data structure, algorithms will be needed to solve the specific

problems associated with such a data structure.

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved O.A.19.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

5. One example of a data structure is an array. An array will store a list of
values.

6. An algorithm is a sequence of programmed steps that solves a specific
problem.

7. The fundamental algorithms that apply to an array data structure are:

insertion, deletion, traversal, searching, and sorting.

B. Example of an Array

1. The following program will introduce you to some of the syntax and usage of

the array class in Java:

Program 19-1

public class ArrayExample
{
 public static void main (String[] args)
 {
 int[] A = new int[6]; // an array of 6 integers
 int loop;

 for (loop = 0; loop < 6; loop++)
 A[loop] = loop * loop;
 System.out.println("The contents of array A are:");
 System.out.println();
 for (loop = 0; loop < 6; loop++)
 System.out.print(" " + A[loop]);
 System.out.println();
 }
}

Run output:

The contents of array A are:

 0 1 4 9 16 25

2. An array is a linear data structure composed of adjacent memory locations, or

“cells”, each holding values of the same type.

 A

A[1] A[2] A[3] A[4] A[5]

1 4 9 16 25

A[0]

0

3. The variable A is an array, a group of 6 related scalar values. There are six

locations in this array referenced by index positions 0 to 5. Note that indexes

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved O.A.19.1 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

always start at zero, and count up by one's until the last slot of the array. If
there are N slots in an array, the indexes will be 0 through N-1.

4. The variable loop is used in a for loop to reference index positions 0
through 5. In this program the square of each index position is stored in the
memory location occupied by each cell of the array. The syntax for accessing
a memory location of an array requires the use of square brackets [].

5. The square brackets [] are collectively an operator in Java. They are similar

to the parentheses as they have the highest level of precedence compared to
all other operators.

6. The index operator performs automatic bounds checking. Bounds checking

makes sure that the index is within the range for the array being referenced.
Whenever a reference to an array element is made, the index must be greater
than or equal to zero and less than the size of the array. If the index is not
valid, the exception ArrayIndexOutOfBoundsException is thrown.

C. Array Declarations and Memory Allocation

1. Array declarations look like this:

type[] arrayName;

This tells the compiler that arrayName will be used as the name of an array
containing type. However, the actual array is not constructed by this
declaration. Often an array is declared and constructed in one statement like
this:

type[] arrayName = new type[length];

This tells the compiler that arrayName will be used as the name of an array
containing type, and constructs an array object containing length number
of slots.

2. An array is an object, and like any other object in Java is constructed out of

main storage as the program is running. The array constructor uses different
syntax than most object constructors; type[length] names the type of data
in each slot and the number of slots. For example:

int[] list = new int[6];
double[] data = new double[1000];
Student[] school = new Student[1250];

Once an array has been constructed, the number of slots it has does not
change.

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved O.A.19.1 (Page 4)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. The size of an array can be defined by using a final value, which means

that you cannot change it or derive from it later.

final int MAX = 200;
int[] numb = new int[MAX];

4. When an array is declared, enough memory is allocated to set up the full size
of the array. For example, the array of int as described above,

int[] list = new int[6]

will require 24 bytes of memory (4 bytes per cell).

D. Application of Arrays

1. Suppose we have a text file votes.txt of integer data containing all the votes

cast in an election. This election happened to have three candidates and the
values in the integer file are 1, 2, or 3, each corresponding to one of the three
candidates.

 Program 19-2

import chn.util.*;

public class Votes
{
 public static void main (String[] args)
 {
 FileInput inFile = new FileInput("votes.txt");

 int vote, total = 0, loop;

 // sized to 4 boxes, initialized to 0's
 int[] data = new int[4];

 vote = inFile.readInt();
 while (inFile.hasMoreTokens())
 {
 data[vote]++;
 total++;
 vote = inFile.readInt();
 }
 System.out.println("Total # of votes = " + total);
 for (loop = 1; loop <= 3; loop++)
 System.out.println("Votes for #" + loop +
 " = " + data[loop]);

 }
}

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved O.A.19.1 (Page 5)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

a. The array data consists of four cells, each holding an integer value. The

first cell, data[0], is allocated but not used in this problem. After
processing the entire file, the variable data[n] contains the number of
votes for candidate n. We could have stored the information for
candidate 1 in position 0, candidate 2 in position 1, and so forth, but the
code is easier to follow if we can use a direct correspondence.

 data

data[0] data[1] data[2] data[3]

75 32 19 0

b. The value of vote is used to increment the appropriate cell of the array

by +1.

2. A second example counts the occurrence of each alphabet letter in a text file.

 Program 19-3

import chn.util.*;

public class CountLetters
{
 public static void main (String[] args)
 {
 FileInput inFile = new FileInput("sample.txt");

 int[] letters = new int[27]; // use positions 1..26
 // to count letters
 int total = 0;
 char ch;

 while (inFile.hasMoreLines())
 {
 String line = inFile.readLine().toLowerCase();
 for(int index = 0; index < line.length(); index++)
 {
 ch = line.charAt(index);

 // line.charAt is from chn.util. It extracts the entry.

 if ('a' <= ch && ch <= 'z') // if we have a letter...
 {
 letters[ch - 96]++; // if ch == 'a', 97-96 = 1, etc.
 total++;
 }
 }
 }

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved O.A.19.1 (Page 6)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

 System.out.println("Count letters");
 System.out.println();
 ch = 'a';
 for (int loop = 1; loop <= 26; loop++)
 {
 System.out.println(ch + " : " + letters[loop]);
 ch++;
 }
 System.out.println();
 System.out.println("Total letters = " + total);
 }
}

a. Each line in the text file is read in and then each character in the line is
copied into ch. If ch is an uppercase letter, it is converted to its
lowercase counterpart.

b. If the character is a letter, the ASCII value of the letter is adjusted to fit
the range from 1-26. For example, if ch == 'a', the program solves
97 - 96 = 1. Then the appropriate cell of the array is incremented
by one.

c. Again, position 0 in the array is not used to make the data processing
easier.

E. Arrays as Parameters

See ArrayOps.java ,
Example Program -
Arrays as Parameters.

1. The program ArrayOps.java, provides examples of passing arrays as
parameters. Notice that the final integer constant MAX = 6 is used to size
the array in this program.

2. The main method declares an array named data. The array is initialized

with the values 0...5 inside the main method.

3. The parameters of the squareList and printList methods are

references to an array object. Any local reference to array list inside the
squareList or printList methods is an alias for the array data inside of
the main method. Notice that after the call of squareList, the values
stored in array data in the main method have been permanently changed.

4. When the rotateList method is called, the copy method of the ArrayOps

class is invoked and the local array listCopy is created as a copy of the
array data in the main method.

5. The rotateList method rotates the values one cell to the right, with the last

value moved to the front of the list. A call to printList is made inside the

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved O.A.19.1 (Page 7)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

rotateList method just before leaving the method. After returning to the
main method, notice that the array data is unchanged.

F. Arrays and Algorithms

 In the following list we introduce five important algorithms that are quite

common in programs that analyze data in arrays. You will meet these again
in later lessons and labs.

1. Insertion is a standard problem that must be solved for all data structures.

Suppose an array had 10 values and an 11th value was to be added. We are
assuming the array can store at least 11 values.

a. If we could place the new value at the end, there would be no problem.
b. But if the new value must be inserted at the beginning of the list in

position 0, the other 10 values must be moved one cell down the list.

2. Deletion of a value creates an empty cell that probably must be dealt with.
The most likely solution after deleting a value, is to move all values that are to
the right of the empty spot one cell to the left.

3. A traversal of an array consists of visiting every cell location, probably in

order. The visit could involve printing out the array, initializing the array,
finding the largest or smallest value in the array, etc.

4. Sorting an array means to organize values in either ascending or descending

order. These algorithms will be covered in depth in future lessons.

5. Searching an array means to find a specific value in the array. There are

several standard algorithms for searching an array. These will be covered in
future lessons.

SUMMARY/
REVIEW:

Arrays are extremely useful data structures and you will have many opportunities
(lots of labs!) to program with them. After spending a few days working with
single dimension arrays, we will move on to multi-dimensional arrays.

ASSIGNMENT: Lab Exercise L.A.19.1, Statistics

Lab Exercise L.A.19.2, Compact

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved L.A.19.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Statistics

Background:

1. Your instructor will provide you with a text file, (numbers.txt), containing a large (N <= 1000) number

of integers. The integers range in value from 0 to 100. The text file has been created with one value
on each line. Due to the potential for the sum of the numbers to be very large, you should use a long
integer in your calculation to find the average.

2. The number of integers in the file is unknown. You must read the text file until the EOF marker is

encountered.

3. Your program must find the average, standard deviation, and mode of the list of numbers. The mode

is defined as the value(s) present with the highest frequency. Calculating the standard deviation
consists of the following steps:

 a. Find the average of the list of numbers.
 b. Determine the difference of each number from the average, and square each difference. Sum all

the differences.
 c. Divide this sum by (the number of values - 1).
 d. Take the square root of the above division problem from step c.

 Example, given this list of numbers: 7 4 5 9 10

 a. The average = 7
 b. Sum of square of differences:
 (7 - 7)2 + (4 - 7)2 + (5 - 7)2 + (9 - 7)2 + (10 - 7)2
 0 + 9 + 4 + 4 + 9 = 26

 c.
26

(5-1) = 6.50

 d. 6.50 = 2.55

4. For a normal distribution, 68.3% of the data will lie within one standard deviation of the average, while

95.4% will lie within two standard deviations.

Assignment:

1. Your program should print out the average, standard deviation, and mode of the data in numbers.txt.

Format the real numbers to print with 2 decimal places.

2. Your program must utilize proper modular design and parameter passing.

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved L.A.19.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. Turn in your source code and run output.

APCS - Java, Lesson 19 © ICT 2003, www.ict.org, All Rights Reserved L.A.19.2 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Compact

Background:

A common task in array processing is to traverse a list and eliminate an undesired value. You will be
provided with a text file named compact.txt, which contains non-negative (≥0) integers in random order.
A text file of integers is provided. The number of integers in the file is not given, but it is no more than
100.

Assignment:

1. Write a program that reads a text file (compact.txt) and stores the integers in an array. Your

instructor will provide this text file.

2. Write a method compact that removes all zeroes from the array, leaving the order of the other

elements unchanged. All local variables within this function must be scalar. In other words, you may
not use a second array to solve the problem.

3. Do not solve the problem by printing out only the non-zero values in the array. The compact method

must remove all zeroes from the array.

Instructions:

1. Print out the list both before and after removing the zeros. For example:

Before: 0, 9, 7, 0, 0, 23, 4, 0

After: 9, 7, 23, 4

2. Your program must use proper modular design and parameter passing.

APCS - Java, Lesson 19 ©2003, ICT H.A.19.1 (Page 1)

EXAMPLE PROGRAM • ARRAYS AS PARAMETERS

public class ArrayOps
{
 public ArrayOps() { }

 // Copy source to target
 public void copy (int[] source, int[] target)
 {
 for (int count=0; count < source.length; count++)
 target[count] = source[count];
 }

 public void printList (int[] list)
 /* list is a reference parameter. list is the same array as
 array data in the main method */
 {
 for (int index = 0; index < list.length; index++)
 System.out.print(list[index] + " ");

 System.out.println();
 System.out.println();
 }

 public void squareList (int[] list)
 /* Array list is a local alias for array data in the main method. Any
 reference to local list is a reference to array data in function main. */
 {
 for (int index = 0; index < list.length; index++)
 list[index] = list[index] * list[index];
 }

 public void rotateList (int[] list)
 /* This function is working with a local copy of the array passed
 as an argument. Changes to local array list will have no effect
 on the array data in the calling method. This function will shift each
 value one cell to the right. The value in list[list.length-1] will be
 moved to list[0]. Before the function is completed, printList will
 be called. The point of this function is to illustrate an array as
 a value parameter. */
 {
 int temp = list[list.length-1];

 int[] listCopy = new int[list.length];

 copy(list, listCopy);

 for (int loop = listCopy.length-1; loop > 0; loop--)
 listCopy[loop] = listCopy[loop-1];
 listCopy[0] = temp;

 System.out.println("Inside of rotateList: ");
 printList (listCopy);

APCS - Java, Lesson 19 ©2003, ICT H.A.19.1 (Page 2)

 }

 public static void main (String[] args)
 {
 final int MAX = 6;

 ArrayOps arrayOps = new ArrayOps();

 int[] data = new int[MAX];

 for (int loop = 0; loop < MAX; loop++)
 data[loop] = loop; // initialize array

 System.out.println("Array initialized: ");

 arrayOps.printList(data); // print array in ascending order
 arrayOps.squareList (data);
 System.out.println("Array after call of squareList: ");
 arrayOps.printList (data);
 arrayOps.rotateList (data);
 System.out.println("Array after call of rotateList: ");
 arrayOps.printList (data); // print list again
 }
}

