
APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 12 – Object References

INTRODUCTION: This lesson discusses object reference variables. These variables refer to
objects (as opposed to holding a primitive data value.)

The key topics for this lesson are:

A. Primitive Data Type Variables
B. Object Reference variables
C. Variable Versus Object Reference Assignment
D. Object References
E. The == operator with Variables and Object References
F. The equals() Method.
G. The null Value.

VOCABULARY: PRIMITIVE DATA OBJECT REFERENCE

GARBAGE COLLECTION ALIAS
equals() null

DISCUSSION: A. Primitive Data Type Variables

1. Java has many data types built into it, and you (as a programmer) can

define as many more as you need. Other than the primitive data types, all
data types are classes. In other words, data is primitive data or object
data. The only type of data a programmer can define is an object data
type (a class).

2. Here is a tiny program that uses a primitive data type:

class primitiveDataType
{
 public static void main(String[] args)
 {
 long value;

 primitiveValue = 95124;
 System.out.println(primitiveValue);
 }
}

3. In this program, the variable value is the name for a 64 bit section of

memory that is used to hold long integers. The statement

 primitiveValue = 95124;

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

puts a particular bit pattern in that 64 bit section of memory.

4. With primitive data types, a variable is a section of memory reserved for
a value of a particular style. For example by saying long value, 64 bits
of memory are reserved for an integer. By saying int sum, 32 bits of
memory are reserved for an integer.

B. Object Reference variables

1. Since objects are big, complicated, and vary in size you do not

automatically get an object when you declare an object reference
variable. For example , in the declaration:

String str;

the variable str does not actually contain the object, but contains
information about where the object is. An object reference is information
on how to find a particular object. The object is a portion of main
memory; a reference to the object serves as a way to get to that portion
of memory.

2. Here is a tiny program that declares a reference variable and then

creates the object:

class StrRefExample
{
 public static void main (String[] args)
 {
 String str;

 str = new String("example string");
 System.out.println(str);
 }
}

3. An object contains data and methods (attributes and behaviors). You can
visualize the String object in the above program like this:

length()
concat()
equals()
...
others

"example
string" str

object reference variable
 object data

 object methods

object reference

A String Object

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

The data section of the object contains the characters. The methods
section of the object contains many methods.

4. Objects are created while a program is running. Each object has a unique

object reference, which is used to find it. When an object reference is
assigned to a variable, then that variable says how to find that object.

C. Variable Versus Object Reference Assignment

1. Notice that there is a difference between the two statements:

primitiveValue = 18234;

and

str = new String("example string");

In the first statement, primitiveValue is a primitive type, so the
assignment statement puts the data directly into it. In the second
statement, str is an object reference variable (the only other possibility)
so a reference to the object is put into that variable.

2. There are only variables containing primitive data and variables containing

object references, and each contains a specific kind of information. A
variable will never contain an object:

Kind of Variable Information it Contains When on the left of "="

primitive variable Contains actual data Previous data is replaced
with new data.

reference variable Contains information on
how to find an object.

Old reference is replaced
with a new reference

3. The two types of variable are distinguished by how they are declared.

Unless it was declared to be of a primitive type, it is an object reference
variable. A variable will not change its declared type.

D. Object References

1. It is possible to reassign an object reference to a new value. For example:

class OneStringReference
{
 public static void main (String[] args)
 {
 String str;

 str = new String("first string");
 System.out.println(str);

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 str = new String("second string");
 System.out.println(str);
 }
}

Run Output:

first string
second string

2. Notice that:

a. Each time the new operator is used, a new object is created.
b. Each time an object is created, there is a reference to it.
c. This reference is saved in a variable.
d. Later on, the reference in the variable is used to find the object.
e. If another reference is saved in the variable, it replaces the previous

reference (see diagram below).
f. If no variables hold a reference to an object, there is no way to find it,

and it becomes "garbage."

3. The word "garbage" is the correct term from computer science to use for

objects that have no references. This is a commonly occurring situation,
not usually a mistake. As a program executes, a part of the Java system
called the "garbage collector" reclaims each lost object (the "garbage") so
that memory it used can be available again.

4. Multiple objects of the same class can be maintained by creating unique

reference variables for each object.
class TwoStringReferences
{
 public static void main (String[] args)
 {
 String strA; // reference to the first object
 String strB; // reference to the second object

 // create the first object and save its reference
 strA = new String("first string");

 // print data referenced by the first object.
 System.out.println(strA);

"first string"

 str
"second string"

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 // create the second object and save its reference
 strB = new String("second string");

 // print data referenced by the first object.
 System.out.println(strB);

 // print data referenced by the second object.
 System.out.println(strA);
 }
}

Run Output:

first string
second string
first string

This program has two reference variables, strA and strB. It creates
two objects and places each reference in one of the variables. Since each
object has its own reference variable, no reference is lost, and no object
becomes garbage (until the program has finished running.)

5. Different reference variables that refer to the same object are called

aliases. In effect, there are two names for the same object. For example:

class Alias
{
 public static void main (String[] args)
 {
 String strA; // reference to the object
 String strB; // another reference to the object

 // Create the only object and save its
 // reference in strA
 strA = new String("only one string");
 System.out.println(strA);

 strB = strA; // copy the reference to strB.
 System.out.println(strB);
 }
}

Run Output:

"first string"

"second string"

strA

strB

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

only one string
only one string

When this program runs, only one object is created (by new). Information
about how to find the object is put into strA. The assignment operator in
the statement

strB = strA; // copy the reference to strB

copies the information that is in strA to strB. It does not make a copy
of the object.

E. The == operator with Variables and Object References.

1. The == operator is used to look at the contents of two reference

variables. If the contents of both reference variables are the same, then
the result is true. Otherwise the result is false.

class EqualsEquals
{
 public static void main (String[] args)
 {
 String strA; // reference to the first object
 String strB; // reference to the second object

 // create the first object and save its reference
 strA = new String("same characters");
 System.out.println(strA);

 // create the second object and save its reference
 strB = new String("same characters");
 System.out.println(strB);

 if (strA == strB)
 System.out.println("This will not print.");
 }
}

Run Output:

same characters
same characters

"only one string"

strA

strB

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. In this program, there are two completely separate objects, strA and
strB, each of which happens to contain the same character data. Each
object consists of a section of main memory completely separate from the
memory that makes up the other object. The variable strA contains
information on how to find the first object, and the variable strB contains
information on how to find the second object.

Since the information in strA is different from the information in strB,
(strA == strB) is false. Since there are two objects, made out of
two separate sections of main memory, the reference stored in strA is
different from the reference in strB. It doesn't matter that the data
inside the objects looks the same.

3. The == operator does not look at objects. It only looks at references

(information about where an object is located.)

4. For primitive types, the == operator looks only at the variables. For

example:

int x = 32, y = 48;

if (x == y) // false, 32 != 48
 System.out.println("They are equal");

x = y;

if (y) // true, 48 == 48
 System.out.println("Now they are equal");

Run Output:

Now they are equal

In this code, only the contents of the variables x and y are examined. But
with primitive types, the contents of a variable is the data, so with
primitive types == looks at data.

The following code fragment contains one additional example; note the
different way that the strings are instantiated:

"same characters"

strA

strB
"same characters"

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 8)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

String strA = "Hello"
String strB = "Hello"

When strA and strB are compared with == the result will be true
because strA and strB point to the same location in memory, where
“Hello” is stored. Java saves memory by not creating “Hello” in two
locations.

5. With primitive and reference types, == looks at the contents of the

variables. However, with reference types, the variables contain object
references and with primitive types, the variables contain the actual data
values.

F. The equals() Method.

1. The result of == is true if and only if the two variables refer to exactly the

same object. You rarely care about that: most likely, you want to
compare the contents of two objects. To test whether two objects contain
matching data, you’ll need to use the equals method. Every Java class
supports the equals method, although the definition of “equals” varies
from class to class.

2. String is one of the classes for which the equals method compares the

contents of objects, so we can use str1.equals(str2) to test
whether str1 and str2 contain the same series of characters.

3. The equals(String) method does look at the contents of objects. It

detects "equivalence." The == operator detects "identity". For example,

String strA; // first object
String strB; // second object

strA = new String("different object, same characters");
strB = new String("different object, same characters");

if (strA == strB)
 System.out.println("This will NOT print");

if (strA.equals(strB))
 System.out.println("This WILL print");

Run Output:

This WILL print

4. In this example, there are two objects. Since each object has its own
identity, == reports false. Each object contains equivalent data so
equals() reports true.

G. The null Value

APCS - Java, Lesson 12 © ICT 2003, www.ict.org, All Rights Reserved O.A.12.1 (Page 9)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

1. In most programs, objects are created and objects are destroyed,
depending on the data and on what is being computed. A reference
variable sometimes does and sometimes does not refer to an object. You
need a way to say that a variable does not now refer to an object. You do
this by assigning null to the variable.

2. The value null is a special value that means "no object." A reference

variable is set to null when it is not referring to any object.

class nullDemo
{
 public static void main (String[] args)
 {
 String a = // 1. an object is created;
 new String("stringy") // variable a refers to it
 String b = null; // 2. variable b refers to no
 // object.
 String c = // 3. an object is created
 new String(""); // (containing no chars)
 // variable c refers to it
 if (a != null) // 4. statement true, so
 System.out.println(a); // the println(a) executes.

 if (b != null) // 5. statement false, so the
 System.out.println(b); // println(b) is skipped.

 if (c != null) // 6. statement true, so the
 System.out.println(c); // println(c) executes (but
 // it has no characters to
 // print).
 }
}
Run Output:

stringy

3. Variables a and c are initialized to object references. Variable b is

initialized to null. Note that variable c is initialized to a reference to a
String object containing no characters. Therefore println(c) executes,
but it has no characters to print. Having no characters is different from
the value being null.

SUMMARY/REVIEW: It is important to understand how an object reference variable differs from a

primitive variable. Nearly every program you write will require you to know
this. Unfortunately, the topic can get confusing if you rush through it too
quickly.

ASSIGNMENT: Worksheet, W.A.12.1, Objects and Object References

