INTRODUCTION:

VOCABULARY:

DISCUSSION:

APCS- Java, Lesson 14

STUDENT OUTLINE

Lesson 14 — Inheritance

Inheritance, a magjor component of object-oriented-programming, is a technique
that will alow you to define avery general class and then later define more
specialized classes based on it. Y ou will do this by adding some new capabilities
to the existing more general class definitions or by changing the way the existing
methods work to match the needs of the more specidized class. Inheritance
saves work because the more specialized class inherits al the properties of the
generd class and you, the programmer, need only program the new features.

The key topics for this lesson are:

A. Single Inheritance

B. ClassHierarchies

C. Usng Inheritance

D. Method Overriding

E. Interfaces

PARENT CLASS SUPERCLASS

BASE CLASS SUBCLASS

CHILD CLASS DERIVED CLASS

METHOD OVERRIDING super

ext ends interface

i mpl enent s

A. Single Inheritance

1. Inheritance enables you to define a new class based on a class that aready
exists. The new class will inherit the characteristics of the existing class, but
aso provide some additiona capabilities. This makes programming essier,
because you can reuse and extend your previous work and avoid duplication
of code.

2. Theclassthat is used as abasisfor defining anew classis caled a
superclass (or parent class or base class). The new class based on the
superclassis called a subclass (or child class or derived class.)

3. The process by which a subclass inherits characteristics from just one parent

classis cdled single inheritance. Some languages dlow a derived class to
inherit from more than one parent class in a process called multiple
inheritance. Multiple inheritance, makes is difficult to determine which class
will contribute what characteristics to the child class. Java avoids these issues
by only providing support for single inheritance.

© ICT 2003, www.ict.org, All Rights Reserved 0.Al14.1 (Pagel)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 14

4. The figure shows a superclass and a subclass. The line between them shows

the"isakind of" relationship. The picture can be read as "a Student isakind
of Person.” The clouds represent the classes. That is, the picture does not
show any particular St udent or any particular Per son, but shows that the
class st udent isasubclass of the Per son class.

superclass

subclass

Figure 14.1 — Subclass and Superclass.

Inheritance is between classes, not between objects. A superclassisa
blueprint that is followed when a new object is constructed. That newly
constructed object is another blueprint that looks much like the original, but
with added features. The subclass in turn can be used to construct objects
that look like the superclass' s objects, but with additional capabilities.

Albert
Einstein

High Schoal
Student

Figure 14.2 — Subclass and Superclass.

6. The figure shows a superclass and a subclass, and some objects that have

been constructed from each. These objects that are shown as rectangles are
actud instances of the class. In the picture, "Albert Eingtein," "Lynne
Brooke," and "Monty Vista' represent actua objects.

© ICT 2003, www.ict.org, All Rights Reserved 0.Al14.1 (Page 2
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 14

Hierarchies

In ahierarchy, each class has at most one superclass, but might have several
subclasses. There is one class, at the "top” of the hierarchy that has no
superclass. Thisis sometimes called the root of the hierarchy.

Col | egeSt udent

Hi ghSchool St ude

Figure 14.3 — Per son Inheritance Hierarchy.

The figure shows a hierarchy of classes. It showsthat "Pri nci pal isakind
of Per son," "St udent isakind of Per son," and that "Teacher isakind of
Per son." It dso showsthat "Hi ghSchool St udent isakind of St udent ”
and "Col | egeSt udent isakind of St udent ."

In our example, the class Per son is the base class and the classes
Pri nci pal , St udent , Teacher, Hi ghSchool St udent , and
Col | egeSt udent are derived classes.

In Java, the syntax for deriving a child class from a parent classis.

cl ass subcl ass extends supercl ass

{

/1 new characteristics of the subclass go here

}

Severa classes are often subclasses of the same class. A subclass may in
turn become a parent class for a new subclass. This means that inheritance
can extend over severa "generations' of classes. Thisis shown in the
diagram, where class Hi ghSchool St udent isasubclass of class

St udent, whichisitself a subclass of the Per son class. In this case, class
Hi ghSchool St udent isconsidered to be a subclass of the Per son class,
even though it is not a direct subclass.

© ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Page 3)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Page)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

5. InJava, every class that does not specifically extend another classisa
subclass of the class Obj ect . For example, in Figure 14.3, the Per son class
extends the Qbj ect class. The Obj ect class has a small number of methods
that make sense for al objects, such asthet oSt ri ng method, but these
methods are not very useful and usually get redefined in classes lower in the
hierarchy.

C. Using Inheritance

1. Hereisaprogram that uses a class Per son to represent people you might
find at a school. The Per son class has basic information in it, such as name,
age and gender. An additional class, St udent , is created that is Smilar to
Per son, but has the id and grade point average of the student.

cl ass Person

{
protected String nyName ; /1 name of the person
protected int nyAge; /] person's age
protected String nyGender; // "M for male, "F' for fenale
/1 constructor
public Person(String name, int age, String gender)
{
nyName = nane; nyAge = age ; nyCGender = gender;
}
public String toString()
{
return nyNane + ", age: " + nyAge + ", gender: " +nyGender;
}
}
class Student extends Person
{
protected String nyldNum /1 Student Id Nunber
protected doubl e nyGPA; /1 grade point average
/'l constructor
public Student(String name, int age, String gender,
String i dNum doubl e gpa)
{
/1 use the super class’s constructor
super (name, age, gender);
[/ initialize what's new to Student
nyl dNum = i dNum
nyGPA = gpa;
}
}
public class H ghSchool
{
public static void main (String args[])
APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Pageb)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 14

Person bob = new Person("Coach Bob", 27, "M);
Student |ynne = new Student ("Lynne Brooke", 16, "F",
"HS95129", 3.5);
System out. println(bob);
Systemout. println(lynne);
}
}

2. TheStudent classisaderived class (subclass) of Per son. An object of

type St udent contains the following members.

Member
nmy Nanme inherited from Per son
my Age inherited from Per son
my Gender inherited from Per son
toString() inherited from Per son
myl dNum defined in St udent
my GPA defined in St udent

3. The constructor for the St udent class initializes the instance data of

St udent objects and uses the Per son class' s constructor to initidize the
data of the Per son superclass. The constructor for the St udent class looks
likethis

/] constructor
public Student(String nanme, int age, String gender,
String i dNum doubl e gpa)
{
/1 use the super class’'s constructor
super (name, age, gender);

/] initialize what's new to Student
nmyl dNum = i dNum
myGPA = gpa;

}

The statement super (name, age, gender) invokesthePerson class's
congtructor to initialize the inherited data in the superclass. The next two
statements initialize the membersthat only St udent has. Note that when
super isused in aconstructor, it must be the first statement.

It is not necessary to use super ; the following would aso work as a
constructor for St udent :

/] constructor
public Student(String nanme, int age, String gender,
String i dNum doubl e gpa)
{
[/ initialize the inherited nenbers
nyNanme = nane;
nmyAge = age ;
nyCGender = gender;
© ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Page6)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

/] initialize what's new to Student
nmyl dNum = i dNum
myGPA = gpa;

}

In this constructor, each variable of the newly created St udent object is set
to aninitid value.

APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved 0.Al14.1 (Page?)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 14

5. Sofar, we have only seen the publ i ¢ (classmembers that are inaccessible

from outside of the class) and pri vat e (classmembers that can be accessed
outside of class) access modifiers. Thereis athird access modifier that can
be applied to an instance variable or method. If it is declared to be

pr ot ect ed, then it can be used in the classin which it is defined and in any
subclass of that class. This declaration isless restrictive than pri vat e and
more restrictive than publ i ¢. Classes that are written specifically to be used
as abasis for making subclasses often have protected members. The
protected members are there to provide a foundation for the subclasses to
build on. But they are il invisble to the public &t large.

. Method Overriding

A derived class can override amethod from its base class by defining a
replacement method with the same signature. For example in our St udent
subclass, thet oSt ri ng() method contained in the Per son superclass does
not reference the new variables that have been added to objects of type

St udent , so nothing new is printed out. Weneed anew t oStri ng()
method in the class St udent :

/1 overrides the toString method in the parent class
public String toString()

{
return nyNane + ", age: " + nyAge + ", gender: " + nyGender +

", student id: " + nyldNum+ ", gpa: " + nyGPA
}

Even though the base classhasat oSt ri ng() method, the new definition of
toString() inthederived class will override the base class sversion . The
base class has its method, and the derived class has its own method with the
same name. With the change in the St udent class the following program will
print out the full information for both items.

cl ass School
{
public static void main (String args[])
{
Person bob = new Person("Coach Bob", 27, "M);
Student |ynne = new Student ("Lynne Brooke", 16, "F",
"HS95129", 3.5);

Systemout. println(bob.toString());
Systemout.println(lynne.toString());
}
}

Run Output:

Coach Bob, age: 27, gender: M
Lynne Brooke, age: 16, gender: F, student id: HS95129, gpa: 3.5

© ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Page 8)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

Thelinebob. toStri ng() calsthetoStri ng() method defined in
Person, andthelinel ynne. toString() calsthetoString() method
definedin St udent .

3. Sometimes (asin the example) you want a derived class to have its own
method, but that method includes everything the derived class's method does.
You can use the super reference in this Situation to first invoke the origina
toString() method inthe base class as follows:

public String toString()
{

return super.toString() +
", student id: " + nmyldNum+ ", gpa: " + nyGPA
}

Inside amethod, super does not have to be used in the firgt statement, unlike
the case when super isused in a constructor.

E. Interfaces

1. InJava, an interface is a mechanism that unrelated objects use to interact
with each other. Like a protocol, an interface specifies an agreed-on behavior
(or behaviors).

2. ThePer son classand its class hierarchy defines the attributes and behaviors
of aperson. But a person can interact with the world in other ways. For
example, an employment program could manage a person at a school. An
employment program isn't concerned with the kinds of itemsit handles as long
as each item provides certain information, such as salary and employee id.
Thisinteraction is enforced as a protocol of method definitions contained
within an interface. The Enpl oyabl e interface would define, but not
implement, methods that set and get the salary, assign an id number, and so
on.

Enpl oyabl e
S

Figure 14.4 — Enpl oyabl e Interface.

3. Towork in the employment program, the Teacher class must agree to this
protocol by implementing the interface. To implement an interface, a class

APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Page9)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

must implement all of the methods defined in the interface. In our example,
the shared methods of the Enpl oyabl e interface would be implemented in
the Teacher class.

APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Page 10)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 14

4.

InJava, ani nt er f ace consists of a set of methods, without any associated
implementations. Here is an example of Java interface that defines the
behaviors of “employability” described earlier:

public interface Enployable

{
public double getSalary();

public String get Enpl oyeel I();

public void setSal ary(doubl e sal ary);
public void setEnpl oyeel D(String id);
}

A class implements an interface by supplying code for dl the interface
methods. i npl enent s isareserved word. For example:

public class Teacher inplements Enpl oyabl e

{

public double getSalary() { return nySalary; }
public int getEnployeelD() { return nyEnpl oyeel D; }

public void setSal ary(double salary) { nySalary = salary; }
public void setEnpl oyeel D(String id) { nyEnployeelD = id; }
}

A class can implement any number of interfaces. In fact, a class can both
extend another class and implement one or more interfaces. So, we can have
things like

public class Teacher extends Person inpl enents Enpl oyabl e

{
-

An interface defines a protocol that any class anywhere in the class hierarchy
can implement. Interfaces are useful for the following:

- Declaring acommon set of methods that one or more classes are
required to implement

- Providing access to an object's programming interface without revealing
the details of its class.

- Providing arelationship between dissmilar classes without imposing an
unnatura class relationship.

You are not likely to need to write your own interfaces until you get to the
point of writing fairly complex programs. However, there are afew
interfaces that are used in important ways in Java's standard packages. You'll
learn about some of these standard interfaces in future lessons. In particular,
the Marine Biology Simulation, which is supplied by the College Board™ for
use in Advanced Placement Computer Science classes, makes frequent use
of the interface concept.

© ICT 2003, www.ict.org, All Rights Reserved 0.A14.1 (Page 11)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

SUMMARY/ Inheritance represents the “is akind of” relationship between types of objects. In

REVIEW: practice it may be used to add new features to an existing class. It isthe primary
tool for reusing your own and standard library classes. Inheritance alows a
programmer to derive a new class (called a derived class or a subclass) from
another class (called a base class or superclass). A derived class inherits al the
data fields and methods (but not constructors) from the base class and can add its
own methods or redefine some of the methods of the base class.

ASSIGNMENT: Lab Exercise, L.A.14.1, BackToSchool
Lab Exercise, L.A.14.2, GraphicPolygon

APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved 0.Al14.1 (Page 12)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

BackToSchool

Background:

The HighSchool application described in the lesson has two classes: the Per son superclass and the

St udent subclass. Using inheritance, in thislab you will create two new classes, Teacher and

Col | egeSt udent . A Teacher will belike Per son but will have additiona properties such as salary
(the amount the teacher earns) and subject (e.g. “ Computer Science”, "Chemistry”, "English”, "Other”).
The Col | egeSt udent classwill extend the St udent class by adding ayear (current leve in college)
and major (e.g. “Electrica Engineering”, “Communications’, “Undeclared”).

The inheritance hierarchy would appear as follows:

Col | egeSt uden

Here isthe Per son base class from the lesson to be used as a starting point for the Teacher class:

cl ass Person

{
protected String nyName ; /1 name of the person

protected int nyAge; /] person's age
protected String nyGender; [// "M for male, "F* for fenale

/'l constructor
public Person(String name, int age, String gender)

{
nyName = nane; nyAge = age ; nyCender = gender;

}

public String toString()

{
return nyNane + ", age: " + nyAge + ", gender: " +nyGender;

APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved L.A.14.1 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

The St udent classis derived from the Per son class and used as a starting point for the
Col | egeSt udent class:

cl ass Student extends Person

{
protected String nyldNum /1 Student 1d Nurber

protected doubl e nyGPA; /1 grade point average

/'l constructor

public Student(String name, int age, String gender,
String i dNum doubl e gpa)

{

/1 use the super class' constructor
super (name, age, gender);

/1 initialize what's new to Student
nyl dNum = i dNum
myGPA = gpa;

Assignment:

1. Add methodsto “set” and “get” the instance variables in the Per son class. These would consist of:
get Nane, get Age, get Gender , set Name, set Age, and set Gender .

2. Add methodsto “set” and “get” the instance variables in the St udent class. These would consist of :
get | dNum get GPA, set | dNum and set GPA.

3. WriteaTeacher classthat extends the parent class Per son.

a. Add instance variables to the class for subject (e.g. “Computer Science’, "Chemistry",, "English”,
"Other”) and salary (the teachers annual salary). Subject should be of type St ri ng and salary
of type doubl e. Choose appropriate names for the instance variables.

b. Write a constructor for the Teacher class. The constructor will use five parameters to initiaize
myName, myAge, myGender , subject, and salary. Use the super reference to use the
constructor in the Per son superclass to initialize the inherited values.

c. Write “setter” and “getter” methods for al of the class variables. For the Teacher classthey
would be: get Subj ect, get Sal ary, set Subj ect ,and set Sal ary.

d. Writethet oSt ri ng() method for the Teacher class. Use asuper reference to do the things
already done by the superclass.

APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved L.A.14.1 (Page?2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

4. WriteaCol | egeSt udent subclass that extends the St udent class.

a. Add instance variables to the class for major (e.g. “Electrical Engineering”, “Communications’,
“Undeclared”) and year (e.g. FROSH =1, SOPH =2, ...). Major should be of type St ri ng and
year of typei nt . Choose appropriate names for the instance variables.

b. Write a constructor for the Col | egeSt udent class. The constructor will use seven parameters
toinitidize mnyNane, nyAge, nyGender , myl dNum my GPA, year, and major. Use the super
reference to use the constructor in the St udent superclassto initiaize the inherited values.

c. Write “setter” and “getter” methods for al of the class variables. For the Col | egeSt udent class
they would be: get Year , get Mgj or , set Year , and set Maj or .

d. Writethet oSt ri ng() method for the Col | egeSt udent class. Use asuper referenceto do
the things already done by the superclass.

5. Writeatesting classwith amai n() that constructs all of the classes (Per son, St udent , Teacher,
and Col | egeSt udent) and calstheirt oSt ri ng() method. Sample usage would be:

Person bob = new Person("Coach Bob", 27, "M);
System out . printl n(bob);

Student |ynne = new Student ("Lynne Brooke", 16, "F', "HS95129", 3.5);
Systemout. println(lynne);

Teacher nrJava = new Teacher ("Duke Java", 34, "M, "Conputer Science", 50000);
Systemout. println(nrJava);

Col | egeStudent ima = new Col | egeStudent ("I na Frosh", 18, "F', "UCB123",
4.0, 1, "English");
Systemout. println(im);

A sample run of the program would give:

Coach Bob, age: 27, gender: M

Lynne Brooke, age: 16, gender: F, student id: HS95129, gpa: 3.5

Duke Java, age: 34, gender: M subject: Conputer Science, salary: 50000.0

Ima Frosh, age: 18, gender: F, student id: UCB123, gpa: 4.0, year: 1, mgjor: English

6. Turnin the source code with the run output attached. There should be one source file for each class:
Person.java for the Per son dass, Student.java for the St udent class, Teacher.java for the
Teacher class, CollegeStudent.java for the Col | egeSt udent class, and BackToSchool .java for
the BackToSchool testing class.

APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved L.A.14.1 (Page 3)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE
GraphicPolygon

Background:

In aprevious lab exercise, we created a Regul ar Pol ygon class that maintained a large number of
properties for any polygon of a given number and length of sides. By extending the Regul ar Pol ygon
class to include the capabilities of the Dr awi ngTool class, it is possble to display agraphic representation
of any polygon. For example, a 9-sided regular polygon (nonagon) would be represented as follows.

_inix

Fifle: Speed

Assignment:

1. Extend the Regul ar Pol ygon class created in lab L.A.7.1 to create a G aphi cPol ygon class. Use
the following declarations as a starting point for your lab work.

cl ass G aphi cPol ygon ext ends Regul ar Pol ygon

{
private Draw ngTool pen = new Drawi ngTool (new Sket chPad(400, 400));
private doubl e xPosition, yPosition;
/'l constructors
/1 Initializes a polygon of nunfides sides and sidelLength
I length in the superclass. The polygon is centered at
I xPosition = yPosition = 0
publ i c G aphi cPol ygon(i nt nunSi des, doubl e si delLength)
{
}
/1l Initializes a polygon of nunti des sides and sidelLength
I length in the superclass. The polygon is centered at
I xPosition = x and yPosition =y
publ i c G aphi cPol ygon(int nunSi des, doubl e sidelLength, double x, double vy)
{
}
APCS - Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved L.A.14.2 (Pagel)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

/1 public nethods

/1 Sets xPosition = x and yPosition =y to correspond to the new
I center of the pol ygon
public void noveTo(doubl e x, double y)

{
}

/1 Draws the polygon about the center point (xPosition, yPosition).

/'l Uses properties inherited from Regul ar Pol ygon to deternine the

/1 nunber and length of the sides, the radius of the inscribed circle,
/1 and the vertex angle with which to draw the pol ygon

public void draw()

{
}
}

2. Write two constructor methods. The first constructor initiaizes the number and length of the sides of a
polygon centered about the point (0, 0). The Second constructor is used to initidize a polygon a
specified number and length of sides with a center at a specified x and y location.

3. Write amethod that draws the polygon onto the Sket chpad window using the movement and
drawing methods available in the Dr awi ngTool class.

4. Write amethod that moves the center of the polygon to a specified x and y location.

5. Write atesting class with amai n() method that constructs a Gr aphi cPol ygon and calls each
method. Sample usage for a polygon with 9 sides of length 100 would give:

Gr aphi cPol ygon gPoly = new Graphi cPol ygon(9, 100);
gPol y. draw() ;

Instructions:
1. Usethefollowing vauesto test your functions:

Square: number of sides = 4, length of side = 150

Octagon: number of sides = 8, length of side = 100
Enneadecagon: number of sides = 19, length of side = 50
Enneacontakaihenagon: number of sides = 91, length of side = 10

APCS- Java, Lesson 14 © ICT 2003, www.ict.org, All Rights Reserved L.A.14.2 (Page 2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

