INTRODUCTION:

VOCABULARY:

DISCUSSION:

APCS- Java, Lesson 6

STUDENT OUTLINE

Lesson 6 — Defining and Using Classes

The previous lessons have discussed how to use objects and their methods. But

all the objects have been created using a class from one of the Java libraries or
curriculum supplied classes. This lesson discusses how to define your own classes
and objects.

The key topics for this lesson are:

Designing a Class
Determining Object Behavior
Instance Variables
Implementing Methods
Constructors

Using Classes

mmoO®w>»

ATTRIBUTES ACCESS SPECIFIER
BEHAVIORS CONSTRUCTOR
ENCAPSULATION INSTANCE VARIABLE
METHOD CALLS OVERLOADED
REFERENCE

A. Designing aClass

1. One of the advantages of object-oriented design isit alows a programmer to
create a new abstract data type that is reusable in other situations

2. When designing a new data type, two components must be identified -
attributes and behaviors.

3. Consider the icons used in computer operating systems. The attributes that
describe the icon are things like a graphic pattern, colors, size, name, and its
position on the screen. Some of its behaviors include changing color and
moving its pogition.

4. The attributes of an object are the nouns that describe that object. For
example, in our checking account example below, the attributes are “current
balance” and “account number”. These will become the private data
members of aclass.

5. Thebehaviors of an object are the verbs that denote the actions of that object
or what it does. For example, in our checking account example below,
behaviors are “accept a deposit”, “process a check”, etc. These will become

© ICT 2003, www.ict.org, All Rights Reserved O.A6.1(Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

the member functions of aclass. In a Java program, behaviors of an object
are described by methods.

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1(Page?2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 6

B. Determining Object Behavior

1

In this section, you will learn how to create a smple class that describes the
behavior of a bank account. Before you start programming, you need to
understand how the objects of your class behave. Operations that can be
carried out with a checking account could consist of:

- Accept adeposit
- Withdraw from the account
- Get the current balance

In Java, these operations are expressed as method calls. For example,
assume we have an object checki ng of type Checki ngAccount . The
methods that invoke the required behaviors

checki ng. deposi t (1000)
checki ng. wi t hdr aw(250)
Systemout. println("Bal ance: " + checki ng. getBal ance());

are represented by the set of methods

- deposit
- W thdraw
- getBal ance

These methods form the behavior of the Checki ngAccount class. The
behavior is the complete list of the methods that you can apply to objects of a
given class. An object of type Checki ngAccount can be viewed asa*black
box” that can carry out its methods.

To construct objects of the Checki ngAccount class, it is necessary to
declare an object variable

Checki ngAccount checki ng;

Object variables such aschecki ng are references to objects. Instead of
holding an object itself, a reference variable holds the information necessary
to find the object in memory.

This object variable checki ng does not refer to any object at al. An
attempt to invoke a method on this variable would cause the compiler to
generate an error indicating that the variable had not been initialized. To
initialize the variable, it is necessary to create a new Checki ngAccount
object using the new operator

checki ng = new Checki ngAccount () ;

This call creates a new object and returns a reference to the newly created
object. To use an object, you must assign that reference to an object variable.

© ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 3)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

5. Wewill implement (that is, create and write the code for) the
Checki ngAccount object so that the account has an initial balance of
1000.0 dollars.

/1 open a new account
doubl e initial Deposit = 1000.0
Checki ngAccount checki ng = new Checki ngAccount () ;

// set initial balance to 1000.0
checki ng. deposi t (i nti al Deposit);

|:‘|x, Checki ngAccount
checki ng
nyBal ance | 1000.0

Figure 6-1. Creating a New Object

6. Objects of the Checki ngAccount class can be used to carry out meaningful
tasks without knowing how the Checki ngAccount objects store their data
or how the Checki ngAccount methods do their work. Thisis an important
aspect of object-oriented programming.

7. Once we understand how to use objects of the Checki ngAccount class, it
is possible to design a Java class that implements its behaviors. To describe
object behavior, you firgt need to implement a class, and then implement
methods within that class.

public class Checki ngAccount
{
/1 Checki ngAccount data

/| Checki ngAccount constructors

/| Checki ngAccount net hods

}

Next we implement the three methods that have already been identified:
- deposit
- Wi thdraw

- getBal ance

public class Checki ngAccount

{
/1 Checki ngAccount data

/| Checki ngAccount constructors
APCS- Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 4)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

public void deposit(double anpunt)

{

/1 nmethod inplenentation

}

APCS- Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 5)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

public void w thdraw(doubl e anount)

{

/1 nethod inplenentation

}

publ i c doubl e get Bal ance()
{

/1 method inplementation

}
}

8. A method header consists of the following parts:
access_specifier return_type nethod_name (parameters)

a Anaccess_specifier (suchaspublic). The access specifier
controls which other methods can call this method. Most methods should
be declared as public so al other methods in your program can call them.

b. Thereturn_type of the method (such asdoubl e or voi d). The return
type isthe type of the value that the method computes. For example, in
the Checki ngAccount class, the get Bal ance method returns the
current account balance, which is a floating-point number, so its return
typeisdoubl e. Thedeposit andwi t hdr aw methods don’t return any
value. To indicate that a method does not return a value, you use the

specid typevoi d.
c. Themet hod_name (such asdeposit).

d. A ligtof thepar anmet er s of the method. The parameters are the input to
the method. Thedeposi t and wi t hdr aw methods each have one
parameter, the amount of money to deposit or withdraw. The type of
parameter, such as doubl e, and name for each parameter, such as
anmount , must be specified. If amethod has no parameters, like
get Bal ance, itistill necessary to supply apair of parentheses ()
behind the method name.

9. Once the method header has been specified, the implementation of the

method must be supplied in a block that is delimited by braces{...}. The
Checki ngAccount methods will be implemented later in Section D.

C. Instance Variables

1. Each object must store its current state. The state is the set of values that
describe the object and that influence how an object reacts to method calls. In
the case of our checking account objects, the state is the current balance and
an account identifier.

APCS- Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 6)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

2. Each object stores its state in one or more instance variables.

public class Checki ngAccount

{

private doubl e nyBal ance;
private String nyAccount Nunber;

/| Checki ngAccount net hods
}

3. Aninstance variable declaration consists of the following parts:
access_specifier typevariable_nane

a Anaccess_specifier (suchasprivate). Instance variables are
generaly declared with the access specifier pri vat e. That meansthey
can be accessed only by methods of the same class, not by any other
method. In particular, the balance variable can be accessed only by the
deposi t,wi t hdr aw, and get Bal ance methods.

b. Thetype of the variable (such asdoubl e).

c. Thevari abl e_nane (such asnyBal ance).

|:|‘L> Checki ngAccount

checki ng
myAccount Nunber | " A23456

Figure 6-2. Instance Variables

4. If instance variables are declared private, then al data access must occur
through the public methods. This means that the instance variables of an
object are effectively hidden from the programmer who only uses a class.
They are available only to the programmer who implements the class, that is,
the one who writes or revises the methods. The process of hiding datais
called encapsulation. Although it is possible in Java to define instance
variables aspubl i ¢ (leave them unencapsulated), it is very uncommon in
practice. We will ways make instance variables pri vat e inthiscurriculum
guide.

5. For example, because the nyBal ance instance variableispri vat e, it
cannot be accessed in other code:

doubl e bal ance = checki ng. nybal ance; // conpiler ERROR

APCS- Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1(Page7)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

However, the public get Bal ance method to inquire about the balance can
be called:

doubl e bal ance = checki ng. get Bal ance(); // K

APCS- Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 8)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 6

D. Implementing Methods

1. Animplementation must be provided for every method of the class. The
implementation for three methods of the Checki ngAccount classisgiven
below.

public class Checki ngAccount

{
private doubl e nyBal ance;

private String nyAccount Nunber;

publ i c doubl e getBal ance()

{

return nyBal ance;
}
public void deposit(doubl e amunt)
{

nmyBal ance = nyBal ance + anount;
}
public void w thdraw doubl e anmount)
{

nyBal ance = nyBal ance — anount;
}

}

The implementation of the methods is straightforward. When some amount of
money is deposited or withdrawn, the balance increases or decreases by that
amount.

3. Theget Bal ance method Ssmply returns the current balance. A r et urn

statement obtains the value of a variable and exits the method immediately.
The return value becomes the value of the method call expression. The
syntax of ar et ur n statement is:

return expression;
or

return; // Exits the method without bringing back a val ue

E. Constructors

1. Thefind requirement to implement the Checki ngAccount classisto define
a constructor, whose purpose isto initialize the values of instance variables
of an object.

public class Checki ngAccount

{

© ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 9)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

publ i ¢ Checki ngAccount() // constructor

{
nyBal ance = 0;
nmyAccount Nunber = "NEW ;
}
}
APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved 0O.A.6.1 (Page 10)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 6

2. Constructors always have the same name as their class. Similar to methods,

constructors are generally declared as public to enable any code in a program
to construct new objects of the class. Unlike methods, constructors do not
have return types.

Congtructors are aways invoked together with the new operator:

new Checki ngAccount () ;

The new operator alocates memory for the objects, and the constructor
initializes it. The value of the new operator is the reference to the newly
allocated and constructed object.

In most cases, you want to declare and store a reference to an object in an
object variable as follows:

Checki ngAccount checki ng = new Checki ngAccount () ;

If you do not initialize an instance variable that is a number, it isinitiized
automaticaly to zero. Even though, initidization is handled automaticaly for
instance variables, it's a matter of good style to initiaize al instance variables
explicitly.

Many classes have more than one constructor. For example, you can supply a
second constructor for the Checki ngAccount class that setsthe

nmyBal ance and account Nurrber instance variablesto initial values, which
are the parameters of the constructor:

public class Checki ngAccount

{

publ i ¢ Checki ngAccount() // constructor defines val ues

{
nyBal ance = 0;
nmyAccount Nunber = "NEW ;

}

publ i ¢ Checki ngAccount (doubl e initial Bal ance, String acctNum
/1 contructor gets val ues el sewhere

{

nyBal ance = initial Bal ance;
nmyAccount Nunber = acct Num

}
}

The second constructor is used if you supply a number and a string as
construction parameters.

Checki ngAccount checki ng = new Checki ngAccount (5000, "A123");

© ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 11)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS- Java, Lesson 6

6. Note that in the above example there are two constructors of the same name.

Whenever you have multiple methods (or constructors) with the same name,
the name is said to be overloaded. The compiler figures out which one to call
by looking at the parameters of each method.

For example, if you construct anew checki ngAccount object with
Checki ngAccount checki ng = new Checki ngAccount () ;

then the compiler picks the first constructor. If you construct an object with
Checki ngAccount checki ng = new Checki ngAccount (5000, "A123");

then the compiler picks the second constructor.

The implementation of the Checki ngAccount classiscomplete and is gven
below:

public class Checki ngAccount

{

private doubl e nyBal ance
private String myAccount Nunber;

publ i ¢ Checki ngAccount ()

{
nmyBal ance = 0;
nmyAccount Nurmber = "NEW ;

}

publ i ¢ Checki ngAccount (doubl e initial Bal ance, String acctNum
{

nyBal ance = initial Bal ance
nmyAccount Nunber = acct Num

}

publ i c doubl e get Bal ance()
{

}

return nyBal ance;

public void deposit(doubl e anmount)

{
}

nyBal ance = nyBal ance + anount;

public void w thdraw(doubl e anount)

{
}

nmyBal ance = nyBal ance — anount;

© ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 12
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

F. Using Classes

1. Using the Checki ngAccount classisbest demonstrated by writing a
program that solves a specific problem. We want to study the following
scenario:

A interest bearing checking account is created with a balance of $1,000.
For two yearsin arow, add 2.5% interest. How much money isin the
account after two years?

2. Two classes are required: the Checki ngAccount classthat was devel oped
in the preceding sections, and a second class called Checki ngTest er . The
main method of the Checki ngTest er class constructs a
Checki ngAccount object, adds the interest twice, then prints out the
balance.

cl ass Checki ngTest er

{

public static void main(String[] args)

{
Checki ngAccount checking =

new Checki ngAccount (1000, "A123");

final double | NTEREST RATE = 2.5;
doubl e i nterest;

i nterest = checking. getBal ance() * | NTEREST_RATE / 100;
checki ng. deposi t (i nterest);

Systemout. println("Bal ance after year 1 is $"
+ checki ng. get Bal ance());

i nterest = checking. getBal ance() * | NTEREST_RATE / 100;
checki ng. deposit (i nterest);

Systemout. println("Bal ance after year 2 is $"
+ checki ng. get Bal ance());

}
}

3. Theclasses can be distributed over multiple files or kept together in asingle
file. If kept together, the class with the mai n method must be declared as
publ i c. Thepubl i ¢ attribute cannot be specified for any other classin the
same file since a Java source file can contain only one publ i ¢ class.

4. Care mugt be taken to ensure that the name of the file matches the name of
the public class. For example, a single file containing both the
Checki ngAccount class and the Checki ngTest er class must be
contained in afile called Checki ngTest er . j ava, not
Checki ngAccount . j ava.

APCS- Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved 0.A.6.1 (Page 13)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

SUMMARY/ The topics in this lesson are critical in your study of computer science. The

REVIEW: concepts of abstraction and object-oriented programming (OOP) will continue to
be developed in future lessons. Before you solve the lab exercise, you are
encouraged to play with the Checki ngAccount class and implement objects
using all the behaviors of the class.

ASSIGNMENT: Lab Exercise, L.A.6.1, MPG
Lab Exercise, L.A.6.2, Rectangle

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved O.A.6.1 (Page 14)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

MPG

Background:

1. Professional programmers carefully design the classes they need before any coding is done. With
well-designed classes, programming is much easier and the program has fewer bugs. Object-oriented
design consists of deciding what classes are needed, what data they will hold, and how they will
behave. All these decisions are documented (written up) and then examined. If something doesn't ook
right, it is fixed before any programming is done.

2. The specifications of a class that models the fuel efficiency of a car would be:

Variables

int myStartM | es; /1 Starting odoneter reading

i nt myEndM | es; /1 Endi ng odoneter reading

doubl e nyGal | onsUsed; /1 Gallons of gas used between the readings
Constructors

/'l Creates a new instance of a Car object with the starting
/1 odonet er readi ngs.
Car (i nt odonet er Readi ng)

Methods
/1 Simulates filling up the tank. Record the current odoneter reading
/1 and the number of gallons to fill the tank

void fillUp(int odoneterReadi ng, double gall ons)

/1 Calculates and returns the mles per gallon for the car.
doubl e cal cul at eMPH)

Assignment:

1. Implement acCar classwith the following properties.

a. A car keepstrack of the start odometer reading, ending odometer reading, and the number of
gallons used between readings.

b. Theinitid odometer reading is specified in the constructor
c. A method cal cul at eMPG calculates and returns the mile per gallon for the car..

d. A methodfil | up smulatesfilling up the tank at a gas Saion: odonet er Readi ng isthe current
odometer reading and gal | ons isthe number of gallons that filled the tank. Save these valuesin
instance variables.

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.1(Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

e. With thisinformation, miles per galon can be calculated. Write the method so that it updates the
instance variables each time it is called (Ssmulating another visit to the pumps). After each cdll,
cal cul at eMPG will caculate the latest miles per gallon.

2. Write atesting class with amai n method that constructs a car and callsfi | | Up and cal cul at eMPG
afew times. Sample usage would be

Car auto = new Car(15); // initial odonmeter reading of 15 mles
auto.fillUp(250, 10); /! odoneter is at 250 mles

/1 fillup with 10 gall ons of gas

/1 repeat auto.fillup line for additional fillups

Systemout.println(auto.calculateMPd)) // print nmles per gallon

3. Write atesting class with amai n method that constructs acar and callsfi | | Up and cal cul at eMPG
afew times. A sample run of the program would give (valuesin bold italics represent input from the
user):

New car odoneter reading: 15
Filling Station Visit
odonet er readi ng: 250
gallons to fill tank: 10
Ml es per gallon: 23.50
Filling Station Visit
odonet er readi ng: 455

gallons to fill tank: 12.5

Ml es per gallon: 16.40
4. Format the output as shown. Miles per gallon should be rounded to 2 decimal places.

5. Turnin the source code with the run output attached. It is recommended that the Car class and the
testing class be combined in one source file (MilesPer Gallon.java)

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.1(Page?2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

RECTANGLE

Background:

1. Professional programmers carefully design the classes they need before any coding is done. With
well-designed classes, programming is much easier and the program has fewer bugs. Object-oriented
design consists of deciding what classes are needed, what data they will hold, and how they will
behave. All these decisions are documented (written up) and then examined. If something doesn't ook
right, it is fixed before any programming is done.

2. The specifications of a class that models a rectangular shape would be:

Variables
private double nyX; // the x coordinate of the rectangle
private double nyY; // the y coordinate of the rectangle

private double myWdth; // the width of the rectangle
private double myHeight; // the height of the rectangle

/1l Creates a 500 x 500 SketchPad with a Draw ngTool, pen, that is used
/1 to display Rectangle objects. The Drawi ngtool is declared static
/1 so that multiple Rectangle objects can be drawn on the Sketchpad
/1 at the same tinme.
private static Draw ngTool pen =
new Dr awi ngTool (new Sket chPad(500, 500));

Congtructors

/1l Creates a default instance of a Rectangle object with all dinensions
/1 set to zero.
Rect angl e()

/1l Creates a new instance of a Rectangle object with the left and right
/1 edges of the rectangle at x and x + width. The top and bottom edges
/1l are at y and y + height.

Rect angl e(doubl e x, double y, double w dth, double height)

Methods

/1 calculates and returns the perinmeter of the rectangle
publ i c doubl e getPerineter()

/1 Calculates and returns the are of the rectangle.
publ i c doubl e getArea()

/1 Draws a new instance of a Rectangle object with the left and right
/1 edges of the rectangle at x and x + width. The top and bottom edges
/!l are at y and y + height.

public void draw()

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.2(Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

Assignment:

1

3.

Implement aRect angl e class with the following properties.

a. A Rect angl e object is specified in the constructor with the left and right edges of the rectangle
at x and x + wi dt h. Thetop and bottom edgesareaty andy + hei ght.

b. A method get Peri net er caculates and returns the perimeter of the Rect angl e.

c. A method get Ar ea calculates and returns the area of the Rect angl e.

d. A method dr aw displays a new instance of a Rect angl e object. Refer to handout, H.A.1.1 —
DrawingTool, for details on Dr awi ngTool s methods.

Write atesting class with amai n method that constructs aRect angl e and callsget Peri net er and
get Ar ea for each Rect angl e created. Sample usage would be:

/'l Construct a 400 x 160 rectangle at |ocation -200, -80.
Rect angl e rect A = new Rectangl e(-200, -80, 400, 160);
rectA.drawm(); // draw the rectangle

Systemout.println("Perimeter =" + rectA. getPerineter());
Systemout.println("Area = " + rectA getArea());

The resulting images would be similar to the one shown below:

| EETrE—— ShEE

Congtruct a 3x3 grid of Rect angl e objects as show below. Y ou should be able to produce the grid
with only 3 rectangles. In addition, calculate and display the perimeter and area of the rectangles.

4. Turn in the source code with the run output attached. It is recommended that the Rect angl e class

and the testing class be combined in one source file (RectangleTest.java).

APCS - Java, Lesson 6 © ICT 2003, www.ict.org, All Rights Reserved L.A.6.2 (Page2)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

