
APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved O.A.1.1(Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 1 - Introduction to Object Oriented Programming

INTRODUCTION: Before we begin to write actual programs, we need to introduce a few basic

concepts of object-oriented programming, the style of programming you will
learn throughout this curriculum guide. The purpose of this lesson is to give you
a feel for object-oriented programming and to introduce a conceptual foundation
of object-oriented programming.

The key topics for this lesson are:

A. Classes and Objects
B. Messages and Methods
C. Objects in Software
D. Compiling and Running a Program

VOCABULARY: OBJECT CLASS

INSTANCE MESSAGE
METHOD ARGUMENT

DISCUSSION: A. Classes and Objects

1. Object-Oriented Programming (OOP) represents an attempt to make

programs more closely model the way people think about and deal with the
world. In object-oriented programming, a program consists of a collection of
interacting objects. To write such a program you need to describe different
types of objects: what they can do, how they are created, and how they
interact with other objects.

2. The world in which we live is filled with objects. For example, an object we

are all familiar with is a drawing tool such as a pencil or pen. A drawing tool
is an object, which can be described in terms of its state and behaviors. The
attributes (state) of a pencil are its drawing color, width of the line it draws,
its location on the drawing surface, etc. Its behaviors consist of drawing a
circle, drawing a line in a forward or backward direction, changing its
drawing direction, changing the color, etc.

APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved O.A.1.1(Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

3. An object in programming is an abstraction for a real-world object. For
example, a drawing tool is an attempt to model the attributes and behaviors
of a pencil or pen.

Figure 1.1 - A DrawingTool object named myPencil

4. To create an object inside the computer program, we must provide a

definition for objects - how they behave and what kinds of information they
maintain is called a class. A class is a kind of mold or template that the
computer uses to create objects.

5. A class is like a rubber stamp that can be used many times to make many

imprints. Each imprint is an object and each one has its own individual
properties such as “size” and “position.” Different stampings may have
different characteristics, even though they were all made with the same
rubber stamp.

Figure 1.2 – A class and five instances having different values for instance variables

“size” and “position.”

6. In OOP terminology, we say the DrawingTool object pencil is an

instance of the DrawingTool class. An object can only be an instance of
one class. In effect, an instance of the class belongs to the class.

Rubber Stamp
(class)

Imprints
(instances)

myPencil

DrawingTool

APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved O.A.1.1(Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

B. Messages and Methods

1. In writing object-oriented programs we first define classes, and while the

program is running, we create objects from these classes to accomplish tasks.
A task can range from drawing in a paint program, to adding numbers, to
depositing money in a bank account. To instruct a class or an object to
perform a task, we send a message to it.

2. You can send a message only to the classes and objects that understand the

message. For an object to process the message it receives, it must possess a
matching method, which is a sequence of instructions an object follows to
perform a task.

3. For example, consider what kind of operations you can carry out with a

pencil. You can

• draw a line in the forward direction
• change the drawing direction by turning left
• get the current drawing color

4. Suppose you have an object myPencil of type DrawingTool. You could

represent the behaviors of the DrawingTool class with the methods

• forward
• turnleft
• getcolor

5. To draw a line of a specified length, we send the message forward along

with the distance to move the pencil. A value we pass to an object is called
an argument of a message. A diagram of sending a message is shown below
in Figure 1.3.

Figure 1.3 - Sending a forward message to a DrawingTool object

myPencil

DrawingTool

forward

turnLeft

getColor

forward 100

APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved O.A.1.1(Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

6. The diagram shown in Figure 1.3 illustrates a situation in which an object
carries out a request (it draws a line 100 units long) but does not respond to
the message sender. In many situations, we need an object to respond by
returning a value to the message sender. For example, suppose we want to
know the current color that is being used for drawing. We can use the
getColor message to return the value. A method that returns a value to a
message sender is illustrated in Figure 1.4 below.

Figure 1.4 - The result of getColor is returned to the sender of the message

C. Objects in Software

1. A program is a collection of instructions that, when performed, cause a

particular task to be performed on a computer. Individuals who write
programs are therefore called programmers. The terms software and code
refer to a collection of one or more programs, so programmers are also
referred to as software developers.

2. Today, the strategy most often employed by software developers is called

object-oriented-programming (OOP). A programmer using an object-
oriented strategy begins by selecting objects that can collectively solve the
given problem.

3. To illustrate how a particular program might be developed in an OOP

fashion, the software developer begins with a set of program requirements
that specifies the desired task for a program. For example:

Write a program to draw a square on a piece of paper with a pencil.

 4. The program requirements suggest that there are two objects, namely a pencil
and piece of paper. One way to determine the objects needed in a program is
to search for the nouns of the problem. In our draw square problem, the
pencil and paper are examples of such nouns.

 5. Once a programmer identifies the objects in the program, the next step is to

find or create a class corresponding to each object. Classes are essential
because they serve as the places where the code of an object-oriented
program resides.

myPencil

DrawingTool

forward

turnLeft

getColor
getColor

color

APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved O.A.1.1(Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

6. Ideally, a programmer reuses an existing class, as opposed to writing code
for a new class. For the purposes of our drawing example, we will use the
preexisting DrawingTool and SketchPad classes for the pencil and paper
objects.

 7. Programming languages are like other foreign languages – the first exposure

to a written example is bound to seem pretty mysterious. You don't have to
understand the details of the program shown below, we'll go over them in the
next lesson.

import apcslib.*;

public class DrawSquare
{
 public static void main(String[] args)
 {
 DrawingTool pencil;
 SketchPad paper;

 paper = new SketchPad(300, 300);
 pencil = new DrawingTool(paper);

 pencil.forward(100);
 pencil.turnLeft(90);
 pencil.forward(100);
 pencil.turnLeft(90);
 pencil.forward(100);
 pencil.turnLeft(90);
 pencil.forward(100);
 }
}

 Program 1.1 – DrawSquare.java

8. The execution of an object-oriented program begins with an initial object.

This initial object serves as the starting point for the entire program. For the
program in Program 1.1, the initial object belongs to the DrawSquare class.

9. The state of an object depends on its components (objects). The

DrawSquare object includes one DrawingTool object declared in the line
that begins with the word DrawingTool and a SketchPad object declared
in the line that begins with SketchPad. The DrawingTool object is given
the name pencil and the SketchPad object is given the name paper.

object declarations

instructions

APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved O.A.1.1(Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

10. An object’s behavior is determined by instructions. When a program
executes, the program’s instructions are performed. There are nine
instructions for the DrawSquare object that are found following the object
declaration lines.

a. The first instruction will construct a new SketchPad object named

paper with dimensions of 300 by 300.
b. The next instruction will cause a new DrawingTool object named

pencil to be constructed on the SketchPad object named paper.
c. The next line of code will cause the pencil to move forward 100 units

drawing a line as it goes.
d. The next line of code will cause the pencil to turn to the left 90

degrees.
e. The remaining 5 steps repeat the process of steps c and d to draw the

remaining three sides of the square.

11. The DrawSquare example illustrates the tools that a programmer uses to
write a program. A program is built from classes that a programmer writes or
reuses. Classes are composed from instructions, and these instructions are
used in such a way that they manipulate objects to perform the desired tasks.

D. Compiling and Running a Program

1. A programmer writes the text of a program using a software program called

an editor. The text of a program in a particular programming language is
referred to as source code, or simply source. The source code is stored in a
file called the source file. For example in the DrawSquare example given
above, source program would be created and saved in a file named
DrawSquare.java.

2. Compiling is the process of converting a program written in a high-level

language into the bytecode language the Java interpreter understands. A Java
compiler will generate a bytecode file from a source file if there are no errors
in the source file. In the case of DrawSquare, the source statements in the
DrawSquare.java source file would be compiled to generate the bytecode
file DrawSquare.class.

Figure 1.5 – From Source Code to Running Program

Running
Program

Source Code

Editor

 class DoIt
 {
 Hi h;
 h=new Hi();

 h.hello();
 h.bye();
 }

Compiler Class files

Library files

Interpreter
Hello World!

Bye!

Java Bytecode
Program

APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved O.A.1.1(Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

3. Errors detected by the compiler are called compilation errors. Compilation
errors are actually the easiest type of errors to correct. Most compilation
errors are due to the violation of syntax rules.

4. The Java interpreter will process the bytecode file and execute the

instructions in it.

5. If an error occurs while running the program, the interpreter will catch it and

stop its execution. Errors detected by the interpreter are called run-time
errors.

Figure 1.6 – Edit-Compile-Run Cycle for a Java Program

SUMMARY/
REVIEW:

One can think of an OOP application as a simulated world of active objects. Each
object has a set of methods that can process messages of certain types, send
messages to other objects, and create new objects. A programmer creates an OOP
application by defining classes of objects.

ASSIGNMENT: Lab Exercise, L.A.1.1, DrawHouse

True

True

Begin

False

Edit
Program

Compile
program

Compiler
errors?

Run
program

Run-time
errors?

End

APCS - Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved L.A.1.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Lab Exercise

DrawHouse

Background:

You will be provided with a file named apcslib.jar, which contains the code needed to implement the
graphics tools to draw objects. The specifications of the drawing tools are provided in Handout H.A.1.1 –
DrawingTool. Simply place the apcslib.jar file in the appropriate folder location so the Java
compiler can find it. Then add this line of code

import apcslib.*;

at the top of your program and the drawing tools are available for use.

Assignment:

Write a program that creates a drawing area of appropriate size (try 500 x 500) and draws a house similar
to the one shown below and with these specifications:

1. The house should fill up most of the drawing area, i.e. draw it big.
2. The house should be centered horizontally on the screen.
3. The house must have a sloped roof. It can be of any slope or configuration. But you cannot have a flat

roof on the house.
4. Adding a door (centered) and windows is optional.

Instructions:

1. Include your name as a documentation statement and also a brief description of the program.
2. You will need to turn in (either on paper or electronically) a copy of your code and a picture of the

house that resulted.

DRAWINGTOOL CLASS SPECIFICATIONS

APCS – Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved H.A.1.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

These classes are not part of Java but are available through the library named apcslib. You must have
the file apcslib.jar in the appropriate directory where Java can access it. To have these classes
available in your program, use this command:

import apcslib.*;

Other features of apcslib will be covered in later lessons.

DrawingTool

protected double
protected xPos
protected yPos
protected direction;
protected int width;
protected boolean isDown;
protected Color color;
...

<<constructors>>

DrawingTool()
DrawingTool(SketchPad)
...

<<accessors>>

public Color getColor()
public double getDirection()
public Point2D.Double getPosition()
public int getWidth()
public String toString()

<<modifiers>>

public void backward(double)
public void down()
public void drawString(String)
public void drawCircle(double)
public void forward(double)
public void home()
public void move(double)
public void move(double, double)
public void setColor(Color)
public void setDirection(double)
public void setWidth(int)
public String toString()
public void turn (double)
public void turnLeft(double)
public void turnRight(double)

DRAWINGTOOL CLASS SPECIFICATIONS

APCS – Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved H.A.1.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

public void up()
...

Invariant

A DrawingTool object

• Appears in a SketchPad Window (this window is 250 pixels wide and 250 pixels high initially, but
can be constructed with different dimensions.)

• The origin (0, 0) is at the center of the drawing window.
• Is directed either up, down, left, or right.
• Is either in drawing mode or in moving mode.

Constructor Methods

public DrawingTool()

postcondition
• A new DrawingTool is created and placed in the center (0, 0) of a SketchPad window that

is 250 pixels wide and 250 pixels high.
• This object is set to drawing mode.
• The direction for this object is up (90º).
• The DrawingTool color is set to blue.
• The DrawingTool width is 1.

public DrawingTool(SketchPad win)

postcondition
• A new DrawingTool is created and placed in the center (0, 0) of the SketchPad window

win.
• This object is set to drawing mode.
• The direction for this object is up (90º).
• The DrawingTool color is set to blue.
• The DrawingTool width is 1.

Accessor Methods

public String toString();

postcondition
result = color

public Color getColor();

postcondition
result = color

public double getDirection();

postcondition
result = direction

public int getWidth();

DRAWINGTOOL CLASS SPECIFICATIONS

APCS – Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved H.A.1.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

postcondition
result = width

Modifier Methods

public backward (double distance);

postcondition
• This DrawingTool object is moved backward from current direction by distance pixels

from the old (previous) location.
• If this object is in drawing mode, a line segment is drawn across the distance path just

traversed.
• The direction is unchanged.
• A 0.5 second delay occurs following this method’s execution.

public void down();

postcondition
• This object is set to drawing mode.

public drawString(String text);

postcondition
• The string text is drawn at the current location using the current color.

public drawCircle (double r);

postcondition
• If the object is in drawing mode, a circle of radius r is drawn around the current location using the

current width and color.

public forward(double distance);

postcondition
• This DrawingTool object is moved in the current direction by distance pixels from the old

(previous) location.
• If this object is in drawing mode, a line segment is drawn across the distance path just

traversed.
• A 0.5 second delay occurs following this method’s execution.

public home();

postcondition
• The location of the DrawingTool object is set to the center of the SketchPad window.
• The drawing direction of the object is ups.

public move(double d);

postcondition
• This DrawingTool object is moved in the current direction by d pixels from the old (previous)

location.
• If this object is in drawing mode, a line segment is drawn across the d path just traversed.

public move(double x, double y);

postcondition

DRAWINGTOOL CLASS SPECIFICATIONS

APCS – Java, Lesson 1 © ICT 2003, www.ict.org, All Rights Reserved H.A.1.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

• This DrawingTool object is moved from the current position to the position specified by the
coordinates x and y.

• If this object is in drawing mode, a line segment is drawn from the old (previous) position to the
absolute position specified by x and y.

public setColor(Color c);

precondition
• c is a valid Color
postcondition
• The color of the DrawingTool object is set to c.

public setDirection(double d);

postcondition
• Sets the direction to d degrees. The orientation is d degrees counterclockwise from the positive x-

axis

public setWidth(int w);

precondition
• w is >= 1
postcondition
• The width of the DrawingTool object is set to w pixels.

public turn(double d);

postcondition
• Changes the current direction counterclockwise by d degrees from the current direction.

public turnLeft(double degrees);

postcondition
• Changes the current direction counterclockwise by d degrees from the current direction.

public turnRight(double degrees);

postcondition
• Changes the current direction clockwise by d degrees from the current direction.

public up();

postcondition
• This object is set to moving mode.

