
APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 9 – while Loops

INTRODUCTION: In many situations, the number of times a loop will occur is dependent on some

changing condition within the loop itself. The while control structure allows us
to set up a conditional loop, one that occurs for an indefinite period of time until
some condition becomes false. In this lesson we will focus on while loops with
some minor usage of nested if-else statements inside. Later on in the course
you will be asked to solve very complex nesting of selection, iterative, and
sequential control structures. The while loops are extremely useful but also very
susceptible to errors. This lesson will cover key methodology issues that assist in
developing correct loops.

The key topics for this lesson are:

A. The while Loop
B. Loop Boundaries
C. The break Statement Variations
D. Conditional Loop Strategies

VOCABULARY: while SENTINEL
 break BOUNDARY
 STATE

DISCUSSION: A. The while Loop

1. The general form of a while statement is:

 while (expression)
 statement;

a. As in the if-else control structure, the Boolean expression must be
enclosed in parentheses ().

b. The statement executed by the while loop can be a simple statement, or a
compound statement blocked with braces {}.

2. If the expression is true the statement is executed. After execution of the

statement, program control returns to the top of the while construct. The
statement will continue to be executed until the expression evaluates as false.

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. The following diagram illustrates the flow of control in a while loop:

while structure

true

false

4. The following loop will print out the integers from 1-10.

int number = 1; // initialize

while (number <= 10) // loop boundary condition
{
 System.out.println(number);
 number++; // increment
}

5. The above example has three key lines that need emphasis:

a. You must initialize the loop control variable (lcv). If you do not initialize
number to 1, Java produces an error message.

b. The loop boundary conditional test (number <= 10) is often a source of
error. Make sure that you have the correct comparison (<, >, ==, <=, >=,
!=) and that the boundary value is correct.

c. There must be some type of increment or other statement that allows the
loop boundary to eventually become false. Otherwise the program will
get stuck in an endless loop.

6. It is possible for the while loop to occur zero times. If the condition is false

due to some initial value, the statement inside of the while loop will never
happen. This is appropriate in some cases.

B. Loop Boundaries

1. The loop boundary is the Boolean expression that evaluates as true or false.

We must consider two aspects as we devise the loop boundary:

a. It must eventually become false, which allows the loop to exit.
b. It must be related to the task of the loop. When the task is done, the loop

boundary must become false.

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

2. There are a variety of loop boundaries of which two will be discussed in this
section.

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 4)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. The first is the idea of attaining a certain count or limit. The code in section
A.4 is an example of a count type of bounds.

Student Answer: 4. Sample problem: In the margin to the left, write a program fragment that

prints the even numbers 2-20. Use a while loop.

5. A second type of boundary construction involves the use of a sentinel value.

In this category, the while loop continues until a specific value is entered as
input. The loop watches out for this sentinel value, continuing to execute until
this special value is input. For example, here is a loop that keeps a running
total of positive integers, terminated by a negative value.

int total = 0;
int number = 1; // set to an arbitrary value
 //to get inside the loop
while (number >= 0)
{
 System.out.print ("Enter a number (-1 to quit) --> ");
 number = console.getInt();
 if (number >= 0)
 total += number;
}
System.out.println("Total = " + total);

a. Initialize number to some positive value.
b. The if (number >= 0) expression is used to avoid adding the sentinel

value into the running total.

C. The break Statement Variations

1. Java provides a break command that forces an immediate end to a control

structure (while, for, do, and switch).

2. The same problem of keeping a running total of integers provides an example

of using the break statement:

ConsoleIO console = new ConsoleIO();
total = 0;
number = 1; /* set to an arbitrary value */

while (number >= 0)
{
 System.out.print("Enter a number (-1 to quit) --> ");
 number = console.getInt();

 if (number < 0)
 break;

 total += number; // this does not get executed if number < 0
}

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 5)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

a. As long as (number >= 0), the break statement will not occur and
number is added to total.

b. When a negative number is typed in, the break statement will cause
program control to immediately exit the while loop.

3. The keyword break causes program control to exit out of a while loop.

This contradicts the rule of structured programming that states that a control
structure should have only one entrance and one exit point.

4. The switch structure (to be covered in a later lesson) will require the use of

the break statement.

D. Conditional Loop Strategies

1. This section will present a variety of strategies that assist the novice

programmer in developing correct while loops. The problem to be solved is
described first.

Problem statement:

 A program will read integer test scores from the keyboard until a negative
value is typed in. The program will drop the lowest score from the total and
print the average of the remaining scores.

2. One strategy to utilize in the construction of a while loop is to think about the

following four sections of the loop: initialization, loop boundary, contents of
loop, and the state of variables after the loop.

a. Initialization - Variables will usually need to be initialized before you get

into the loop. This is especially true of while loops that have the
boundary condition at the top of the control structure.

b. Loop boundary - You must construct a Boolean expression that becomes

false when the problem is done. This is the most common source of error
in coding a while loop. Be careful of off-by-one errors that cause the
loop to happen one too few or one too many times.

c. Contents of loop - This is where the problem is solved. The statement of

the loop must also provide the opportunity to reach the loop boundary. If
there is no movement toward the loop boundary you will get stuck in an
endless loop.

d. State of variables after loop - To ensure the correctness of your loop you

must determine on paper the status of key variables used in your loop.
This involves tracing of code, which is demanding but necessary.

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 6)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. We now solve the problem by first developing pseudocode.

 Pseudocode:

initialize total and count to 0
initialize smallest to INT_MAX
get first score
while score is not a negative value
 increment total
 increment count
 change smallest if necessary
 get next score
subtract smallest from total
calculate average

4. And now the code:

public static void main (String[] args)
{
 ConsoleIO console = new ConsoleIO();
 int total=0;
 int smallest = INT_MAX;
 int score;
 int count = 0;
 double avg;

 System.out.print("Enter a score (-1 to quit) ---> ");
 score = console.getlnInt();

 while (score >= 0) // loop boundary
 {
 total += score;
 count++;

 if (score < smallest)
 smallest = score; // maintain state of smallest

 System.out.print("Enter a score (-1 to quit) --> ");
 score = console.getInt(); // allows us to approach boundary
 }

 if (count > 1)
 {
 total -= smallest;
 avg = double (total)/(count-1);
 System.out.println("Average = " + avg);
 }
 else
 System.out.println("Insufficient data to average");
}

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 7)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

5. Tracing code is best done in a chart or table format. It keeps your data
organized instead of marking values all over the page. We now trace the
following sample data input:

 65 23 81 17 45 -1

score score >= 0 total count smallest

undefined undefined 0 0 INT_MAX
65 true 65 1 65
23 true 88 2 23
81 true 169 3 23
17 true 186 4 17
45 true 231 5 17
-1 false

 When the loop is terminated the three key variables (total, score, and

smallest) contain the correct answers.

6. Another development tool used by programmers is the concept of a state

variable. The term state refers to the condition or value of a variable. The
variable smallest maintains state information for us, that of the smallest value
read so far. There are three aspects to consider about state variables:

a. A state variable must be initialized.
b. The state will be changed as appropriate.
c. The state must be maintained as appropriate.

 In the chart above, smallest was initialized to the highest possible integer. As
data was read, smallest was changed only if a newer smaller value was
encountered. If a larger value was read, the state variable did not change.

7. When analyzing the correctness of state variables you should consider three

things.

 Is the state initialized?
 Will the state find the correct answer?
 Will the state maintain the correct answer?

 As first-time programmers, students will often initialize and find the state, but

their code will lose the state information as the loop continues on. Learn to
recognize when you are using a state variable and focus on these three parts:
initialize, find, and maintain state.

8. Later on in the year we will add the strategy of developing loop boundaries

using DeMorgan's law from Boolean algebra. This advanced topic will be
covered in Lesson 18.

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved O.A.9.1 (Page 8)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

SUMMARY/
REVIEW:

This lesson provides both syntax and strategies needed to build correct while
loops. The terminology of loop construction will give us tools to build and debug
conditional loops. We can use terms such as "off-by-one" errors or "failure to
maintain state." This is a critical topic, one that takes much time and practice to
master.

ASSIGNMENT: Lab Exercise, L.A.9.1, LoanTable
 Lab Exercise, L.A.9.2, FunLoops

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved L.A.9.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

LoanTable

Background:

When buying a home, a very important financial consideration is getting a loan from a financial institution.
Interest rates can be fixed or variable and there are service charges called points for taking out a loan.
One point is equal to 1% of the loan amount borrowed. Taking out a loan of $150,000 with a 2 point
charge will cost you $3,000 before you ever make your first house payment! Some banks offer lower
interest rates but higher points, and vice versa. It is helpful to know what the monthly house payment will
be for a given loan amount over different interest rates.

The monthly payment on a loan is determined using three inputs:

1. The amount of the loan (principal).

2. The number of years for the loan to be paid off.

3. The annual interest rate of the loan.

The formula for determining payments is:

 a =
(p * k * c)

(c - 1)

p = principal, amount borrowed
k = monthly interest rate (annual rate/12.0)
n = number of monthly payments (years * 12)
c = (1 + k)n
a = monthly payment (interest and principal paid)

Assignment:

1. Write a program that prompts the user for the following information:

a. The amount of the loan
b. The length of the loan in years
c. A low interest rate in %
d. A high interest rate in %

2. Print out the monthly payment for the different interest rates from low to high, incremented by 0.25%.

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved L.A.9.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. A sample run output is given below:

Mortgage problem

Principal = $100000.00
Time = 30 years
Low rate = 11%
High rate = 12%

Annual Interest Rate Monthly Payment

 11.00 952.32
 11.25 971.26
 11.50 990.29
 11.75 1009.41
 12.00 1028.61

4. Your program should make use of the built-in pow function located in the Math class.

5. Your program must make use of separate methods for the data input section and the printing section

of the assignment.

6. Your program must use a while loop to solve the problem.

Instructions:

1. Write the program. Confirm that it works to the screen using the above sample output.

2. Solve 2 run outputs to the printer. Use the following sets of inputs.

Run 1: Principal 187450.00
 Low rate 8.00
 High rate 12.00
 Years 30

Run 2: Principal 12000.00
 Low rate 10.00
 High rate 12.00
 Years 5

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved L.A.9.2 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

FunLoops

Background:

1. Magic square problem:

 a. Some perfect squares have unique mathematical properties. For example, 36 is:

 • a perfect square, 62
 • and the sum of the integers 1 to 8 (1+2+3+4+5+6+7+8 = 36)

• so let us call a “magic square” any number that is both a perfect square AND equal to the sum
of consecutive integers beginning with 1.

 b. The next magic square is 1225:

 • 352 = 1225
 • 1225 = sum of 1 to 49

 c. Write a method that prints the first n magic squares.

2. Reversing an integer problem:

 a. Write a method that reverses the sequence of digits in an integer value.

 • 123 ---> 321
 • 1005 ---> 5001
 • 2500 ---> 52 {you will not have to print out any leading zeroes, such as 0052}

3. Least Common Multiple problem:

a. write a method that determines the Least Common Multiple of two integers. For example, the
LCM of the following pairs:

2,3 LCM = 6
4,10 LCM = 20
12,15 LCM = 60
7,70 LCM = 70

Assignment:

1. Code separate methods to solve each problem.
2. Test each method using the following instructions.
3. You will need to work with long integers for problems 1 & 2.

APCS - Java, Lesson 9 © ICT 2003, www.ict.org, All Rights Reserved L.A.9.2 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

Instructions :

1. Find the first four magic squares. The first one is the integer 1.

2. Solve these values for reverse the digits:

 12345 10001 1200 5

3. Find the LCM of the following pairs of values:

 15, 18
 40, 12
 2, 7
 100, 5

4. You may use the following form for the main method

public static void main(String[] args)
{
 FunLoops fun = new FunLoops();

 fun.magicsquare(4);
 System.out.println("12345 reversed ---> " + fun.reverse (12345));
 System.out.println("10001 reversed ---> " + fun.reverse (10001));
 System.out.println("1200 reversed ---> " + fun.reverse (1200));
 System.out.println("5 reversed ---> " + fun.reverse (5));
 System.out.println();
 System.out.println("LCM (15,18) = " + fun.lcm (15,18));
 System.out.println("LCM (40,12) = " + fun.lcm (40,12));
 System.out.println("LCM (2,7) = " + fun.lcm (2,7));
 System.out.println("LCM (100,5) = " + fun.lcm (100,5));
}

5. Try finding the first 10 magic squares. This is one of the few programs in this course that take so long

that you can accurately time them. Experiment with this program by running it on computers with
different clock speed (number of megahertz).

