
APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 7 – More About Methods

INTRODUCTION: Programs of any significant size are broken down into logical pieces called
methods. It was recognized long ago that programming is best done in small
sections that are connected in very specific and formal ways. Java provides the
construct of a function, allowing the programmer to develop new functions not
provided in the original Java libraries. Breaking down a program into blocks or
sections leads to another programming issue regarding identifier scope. Also,
functions need to communicate with other parts of a program that requires the
mechanics of parameter lists and a return value.

The key topics for this lesson are:

A. Writing Methods in Java
B. Value Parameters and Returning Values
C. The Signature of a Method
D. Lifetime, Initialization, and Scope of Variables

VOCABULARY: METHOD DECLARATION SCOPE
 METHOD DEFINITION GLOBAL SCOPE
 PARAMETERS LOCAL SCOPE
 ACTUAL PARAMETERS BLOCK
 VALUE PARAMETERS FUNCTION
 FORMAL PARAMETERS STATIC VARIABLE
 SIGNATURE

DISCUSSION: A. Writing Methods in Java

1. A method is like a box that takes data in, solves a problem, and usually

returns a value. The standard math methods follow this pattern:

 Math.sqrt (2) --> 1.414
 Math.sin (30) --> -0.988 (Note: computation is in radians!)

2. There are times when the built-in methods of Java will not get the job done.

We will often need to write customized methods that solve a problem using
the basic tools of a programming language.

3. For example, suppose we need a program that converts gallons into liters.

We could solve the problem within the main method, as shown in
Program 7-1.

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 Program 7-1

import chn.util.*;

class GallonsToLiters
{
 public static void main (String[] args)
 {
 ConsoleIO console = new ConsoleIO();

 System.out.println("Enter an amount of gallons --> ");
 double gallons = console.readDouble();
 double liters = gallons * 3.785;
 System.out.println("Amount in liters = " + liters);
 }
}

 This works fine, but the mathematics of the conversion is buried inside the
main method. The conversion tool is not available for general use. We are
not following the software engineering principle of writing code that can be
recycled in other programs.

4. Here is the same routine coded as a reusable method, which would allow for

conversion of gallons to units other than liters:

Program7-2

import chn.util.*;

class FluidConverter
{
 public double toLiters(double amount)
 {
 return amount * 3.785;
 }
}
public class TestConverter
{
 public static void main(String[] args)
 {
 ConsoleIO console = new ConsoleIO();
 FluidConverter convert = new FluidConverter();

 System.out.print("Enter an amount of gallons --> ");
 double gallons = console.readDouble();
 System.out.println("Amount in liters = " +
 convert.toLiters(gallons));
 }
}

Sample run output:

Enter an amount of gallons --> 10
Amount in liters = 37.85

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. Here is the sequence of events in Program 7-2.
a. Execution begins in the method named main with the user prompt and

the input of an amount of gallons.
b. The toLiters method of the convert object is called and the number

of gallons is passed as an argument to the toLiters method.
c. Program execution moves to toLiters, which does the computation

and returns the answer to the calling statement.
d. The answer is displayed.

6. The general syntax of a method declaration is

modifiers return_type method_name (parameters)
{
 method_body
}

Example (from program 7-2):

public double toLiters(double gallons)

a. The modifiers refers to a sequence of terms designating different

kinds of methods. These will be discussed gradually in later lessons.
b. The return_type refers to the type of data a method returns. The data

type can be one of the predefined types (integer, double, char) or a user-
defined type.

c. method_name is the name of the method. It must be a valid identifier. In
Program 7-2, the names of the methods are main and toLiters.

d. The parameters list will allow us to send values to a method. The
parameter list consists of one or more type-identifier pairs (example:
double amount). The parameters in the method instantiation are called
the formal parameters.

e. The method_body contains statements to accomplish the work of the
method. In the toLiters method there is one line in the body.

7. The last line of the main method contains the following reference to a

method: convert.toLiters(gallons). This causes the value
represented by the variable gallons to be sent (passed) to toLiters,
where a computation is done, and a value is returned. In the toLiters
method the value that is passed is referred to as amount. In the next
section we will talk in detail about passing values in this manner.

8. This idea of a method taking in a value, using the value in a computation, and

returning the result of a computation is similar to the mathematical idea of a
function, which is why a method that returns a value is often referred to as a
function.

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

B. Value Parameters and Returning Values

1. The word parameter is used to describe variables that pass information

within a program. The simple process in Program 7-2 of passing a number
(of gallons) to a method that will compute something (number of liters) is
representative of a common occurrence in Java programming – passing
values with parameters. Sometimes the word “argument” is used in place of
parameter.

2. We mentioned above that the parameter gallons is a formal parameter

because it is named in the instantiation of the method. Another kind of
parameter is a value parameter, which is used in a computation. In the
computation amount * 3.785, amount is a value parameter.

3. A value parameter has the following characteristics:

a. This value parameter is a local variable. This means that it is valid only
inside the block (method) in which it is declared.

b. It receives a copy of the argument that was passed to the method. The
value of 10 stored in gallons (inside main) is passed to the parameter
amount (inside toLiters).

c. The value parameter is a variable that can be modified within the method.

4. In order for a method to return a value, there must be a return statement
somewhere in the body of the method.

5. If a method returns no value the term void should be used. For example:

public void printHello()
{
 System.out.println("Hello world");
}

6. A function (method) can have multiple parameters in its parameter list. For
example:

public double doMath(int a, double x)
{
 ... code ...
 return doubleVal;
}

 When this method is called, the arguments fed to the doMath method must be
of an appropriate type. The first argument must be an integer. The second
argument can be an integer because it will be promoted to a double.

double dbl = doMath(2, 3.5); // this is okay
double dbl = doMath(2, 3); // this is okay
double dbl = doMath(1.05, 6.37); // this will not compile

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

7. Value parameters are often described as one-way parameters. The
information flows into a function but no information is passed back through
the value parameters. A single value can be passed back using the return
statement, but the formal parameters in the function remain unchanged.

8. The formal parameters used to supply values for the value parameters can be

either literal values (2, 3.5) or variables (a, x).

double dbl = doMath(a, x); // example using variables

C. The Signature of a Method

1. In order to call a method legally, you need to know its name, you need to

know how many formal parameters it has, and you need to know the type of
each parameter. This information is called the method's signature. The
signature of the method doMath can be expressed as as:
doMath(int, double). Note that the signature does not include the names
of the parameters; in fact, if you just want to use the method, you don't even
need to know what the formal parameter names are, so the names are not
part of the signature.

2. Java allows two different methods in the same class to have the same name,

provided that their signatures are different. We say that the name of the
method is overloaded because it has several different meanings. The
computer doesn't get the methods mixed up. It can tell which one you want to
call by the number and types of the actual parameters that you provide in the
subroutine call statement. You have already seen overloading used in the
System.out class. This class includes many different methods named
println, for example. These methods all have different signatures, such as:

println(int) println(double) println(String)
println(char) println(boolean) println()

3. The signature does not include the method's return type. It is illegal to have

two methods in the same class that have the same signature but that have
different return types. For example, it would be a syntax error for a class to
contain two methods defined as:

double dbl = doMath(int, double);
int dbl = doMath(int, double);

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

D. Lifetime, Initialization, and Scope of Variables

1. Three categories of Java variables have been explained thus far in this

curriculum guide.
- Instance variables
- Local variables
- Parameter variables

2. The lifetime of a variable defines the portion of run time during which the

variable exists.

a. When an object is constructed, all its instance variables are created. As

long as any part of the program can access the object, it stays alive.
b. A local variable is created when the program enters the statement that

defines it. It stays alive until the block that encloses the variable definition
is exited.

c. When a method is called, its parameter variables are created. They stay
alive until the method returns to the caller.

3. The initial state of a variable is also determined by its type.

a. Instance variables (associated with a particular object) and static

variables (associated with a particular class) are automatically initialized
with a default value (0 for numbers, false for boolean, null for
objects) unless you specify another parameter.

b. Parameter variables are initialized with copies of the formal parameters.
c. Local variables are not initialized by default. An initial value must be

supplied. The compiler will generate an error if an attempt is made to use
a local variable that has never been initialized.

4. Scope refers to the area of a program in which an identifier is valid and has

meaning.

a. Instance variables of a class are usually declared private, and have
class scope. Class scope begins at the opening left brace, {, of the class
definition and terminates at the closing brace, }, of the class definition.
Class scope enables methods of a class to directly access all instance
variables defined in the class.

b. The scope of a local variable extends from the point of its definition to the
end of the enclosing block

c. The scope of a parameter variable is the entire body of its method.

5. An example of the scope of a variable is given in Program 7-3. The class

ScopeTest is created with four methods:

 - printLocalTest
 - printInstanceTest
 - printParamTest

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 8)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 - main

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 9)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

6. The subclass st is created as “a kind of” ScopeTest, so it contains the
same methods. Each of these methods contains a variable named test.

 7. The statement st.printLocalTest() calls the method

printLocalTest , and in a similar way each method is called.

8. The results show the following about the scope of the variable test:

a. Within the scope of main, the value of test is 10, the value assigned
within the main method.

b. Within the scope of printLocalTest, the value of test is 20, the value
assigned within the printLocalTest method

c. Within the scope of printInstanceTest, the value of test is 30, the
private value assigned within ScopeTest, because there is no value
given to test within the printInstanceTest method

d. Within the scope of printParamTest, the value of test is 40, the value
sent to the printParamTest method

Program 7-3

public class ScopeTest
{
 private int test = 30;

 public void printLocalTest()
 {
 int test = 20;
 System.out.println("printLocalTest: test = " + test);
 }

 public void printInstanceTest()
 {
 System.out.println("printInstanceTest: test = " + test);
 }

 public void printParamTest(int test)
 {
 System.out.println("printParamTest: test = " + test);
 }

 public static void main (String[] args)
 {
 int test = 10;

 ScopeTest st = new ScopeTest();
 System.out.println("main: test = " + test);

 st.printLocalTest();
 st.printInstanceTest();
 st.printParamTest(40);
 }
}

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 10)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Run output:

main: test = 10
printLocalTest: test = 20
printInstanceTest: test = 30
printParamTest: test = 40

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved O.A.7.1 (Page 11)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

SUMMARY/
REVIEW:

Your programs will grow in size and complexity. Initially you will not use all the
tools presented in this lesson and other lessons regarding methods. However, you
need to see and understand all the method-writing tools in Java since eventually
you will need them in your own work and to help you read another programmer's
code.

ASSIGNMENT: Lab Exercise, L.A.7.1, Fun
Lab Exercise, L.A.7.2, Polygon
Lab Exercise, L.A.7.3, RectangleMethods

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Fun

Assignment:

1. The two temperature scales used in the United States are Celsius and Fahrenheit. The mathematical

relationship between the two scales is:

)32(
9
5

−= FC

 Write two methods, fToC and cToF, which convert temperatures from one scale to another. For

example, a call of fToC will return the equivalent Celsius temperature for a given Fahrenheit
temperature.

 Celsius = fToC(100); // Celsius now stores 37.8

2. Write a method which takes in the radius of a sphere and returns its volume. The formula is:

 3

3
4

rV π=

 You are encouraged to use a constant for the value of π .

3. Write a method which returns the hypotenuse of a right triangle given the input of the two smaller

sides. Use the Pythagorean theorem:

 222 cba =+

Instructions:

1. Format all floating point values to two decimal places (0.01).

2. You can use the following format of an output statement to test your program:

System.out.println("212 F --> " + Format.left(fToC(212), 10, 2));

 the main method could be written using only 11 methods calls.

3. Use the following values to test your methods:

 Fahrenheit to Celsius: 212oF, 98.6oF, 10oF
 Celsius to Fahrenheit: -15oC, 0oC, 70oC
 Volume of a sphere, radius of: 1.0, 2.25, 7.50
 Hypotenuse calculations: sides of 3.0 and 4.0, sides of 6.75 and 12.31

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.2 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Polygon

Background:

Polygons are two-dimensional shapes formed by line segments. The segments are edges that meet in pairs
at corners called vertices. A polygon is regular if all its sides are equal and all its angles are equal.

For an n-sided regular polygon of side s, the angle at any vertex is θ, and the radii of the inscribed and
circumscribed circles are r and R respectively. A 5-sided regular polygon (pentagon) would be
represented as follows:

Assignment:

1. Create a RegularPolygon class to model any regular polygon. Use the following declarations as a

starting point for your lab work.

class RegularPolygon
{

 private int myNumSides; // # of sides
 private double mySideLength; // length of side
 private double myR; // radius of circumscribed circle
 private double myr; // radius of inscribed circle

 // constructors
 public RegularPolygon()
 {
 }

 public RegularPolygon(int numSides, double sideLength)
 {
 }

θ

R

r

s

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.2 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

 // private methods
 private void calcr()
 {
 }

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.2 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

 private void calcR()
 {
 }

 // public methods
 public double vertexAngle()
 {
 }

 public double Perimeter()
 {
 }

 public double Area()
 {
 }

 public double getNumside()
 {
 }

 public double getSideLength()
 {
 }

 public double getR()
 {
 }

 public double getr()
 {
 }
}

2. Write two constructor methods. The default constructor creates a 3-sided polygon (triangle). The

other constructor takes an integer value representing the number of sides and a double value
representing the length of side, and constructs the corresponding regular polygon.

3. Write a method that calculates the vertex angle, θ. This angle can be determined as follows:

°×





 −

= 180
2

n
n

θ

where n represents the number of sides.

4. Write a method that calculates the perimeter. This value is determined simply as the number of sides,

n, times the length of a side, s:

nsperimeter =

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.2 (Page 4)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

5. Write a method that calculates the radius of the inscribed circle, r. The inscribed circle is the circle
that can be drawn inside of the regular polygon such that it is tangent to every side of the polygon, for
example, the smaller circle in the diagram above. It can be calculated as:







=

n
sr

π
cot

2
1

where n represents the number of sides, s represents the length of a side, and cot() is the
trigonometric function, cotangent. We use the value p instead of 180 in the formula because the Java
math functions assume that angles are given in radians instead of degrees. Note: the built-in Java
method math.PI produces the value of p. An alternative is to replace p with 180 in all the formulas
here and use following method from the Math Class to convert from degrees to radians:

Math.toRadians(double angdeg)

The cotangent function is not part of the Java Math library, however, the cotangent of an angle can be
calculated as the reciprocal of the tangent as follows:

() ()θ
θ

tan
1

cot =

6. Write a method that calculates the radius of the circumscribed circle, R. The circumscribed circle is

the circle that intersects each vertex of the polygon, for example the larger circle in the diagram
above. R can be calculated as:







=

n
sR

π
csc

2
1

where n represents the number of sides, s represents the length of a side and csc() is the
trigonometric function, cosecant. The cosecant function is not part of the Java Math Class, however,
the cosecant of an angle can be calculated as the reciprocal of the sine as follows:

() ()θ
θ

sin
1

csc =

7. Write a method that calculates the area of the regular polygon . It can be calculated as:







=

n
nRarea

π2
sin

2
1 2

where n represents the number of sides and R represents the radius of the circumscribed circle.

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.2 (Page 5)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

8. All trigonometric function in the Java Math Class take radians as the parameter. To convert an angle
measured in degrees to the equivalent angle measured in radians use the following method from the
Math Class:

public static double toRadians(double angdeg)

9. Write a testing class with a main() that constructs a RegularPolygon and calls each method. A
sample run of the program for a polygon with 4 sides of length 10 would give:

number of sides = 4
length of side = 10.00
radius of circumscribed circle = 7.07
radius of inscribed circle = 5.00
vertex angle = 90.0
perimeter = 40.00
area = 100.00

Instructions:

1. Format all floating point values to two decimal places (0.01).

2. Test the default constructor by constructing a regular polygon with no parameters as follows:

RegularPolygon poly = new RegularPolygon();

3. Use the following values to test your functions:

 Square: number of sides = 4, length of side = 10
 Octagon: number of sides = 8, length of side = 5.75
 Enneadecagon: number of sides = 19, length of side = 2
 Enneacontakaihenagon: number of sides = 91, length of side = 0.5

 Answers:

 n s ? (degrees) r R Perimeter Area
Square 4 10 90.00 5.00 7.07 40.00 100.00

Octagon 8 5.75 135.00 6.94 7.51 46.00 159.64
Enneadecagon 19 2 161.05 5.99 6.08 38.00 113.86

Enneacontakaihenagon 91 0.5 176.04 7.24 7.24 45.50 164.68

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.3 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

RectangleMethods

Background:

1. In this lab exercise, you will continue your work on the Rectangle class created in

L.A.6.2 - Rectangle by adding additional attributes and behaviors. These enhancements will include
the ability to construct a Rectangle from and existing one, get and set the x coordinate, y coordinate,
width and height parameter, set the orientation in which the rectangle will be drawn, and display
textual information on the drawing surface.

2. The specifications of a class that models a rectangular shape would be:

Variables
private double myX; // the x coordinate of the rectangle
private double myY; // the y coordinate of the rectangle
private double myWidth; // the width of the rectangle
private double myHeight; // the height of the rectangle

// saves the direction the pen is pointing
// (0 = horizontal, pointing right)
private double myDirection;

// Creates a 500 x 500 SketchPad with a DrawingTool, pen, that is used
// to display Rectangle objects. The Drawingtool is declared static
// so that multiple Rectangle objects can be drawn on the Sketchpad
// at the same time.
private static DrawingTool pen =
 new DrawingTool(new SketchPad(500, 500));

Constructors

// Creates a default instance of a Rectangle object with all dimensions
// set to zero.
Rectangle()

// Creates a new instance of a Rectangle object with the left and right
// edges of the rectangle at x and x + width. The top and bottom edges
// are at y and y + height.
Rectangle(double x, double y, double width, double height)

// Creates a new instance of a Rectangle object that is a copy of an
// existing Rectangle object.
Rectangle(Rectangle rect)

Methods
// Sets the x coordinate of this Rectangle
public void setXPos(double x)

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.3 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

// Sets the y coordinate of this Rectangle
public void setYPos(double Y)

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.3 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

// Sets the width this Rectangle
public void setWidth(double width)

// Sets the height of this Rectangle
public void setHeight(double height)

// Sets the direction the DrawingTool is pointing
// 0 = horizontal to the right
public void setDirection(double direction)

// Returns the x coordinate of this Rectangle
public double getXPos()

// Returns the y coordinate of this Rectangle
public double getYPos()

// Returns the width of this Rectangle
public double getWidth()

// Returns the height of this Rectangle
public double getHeight()

// Returns the direction the DrawingTool is pointing
// 0 = horizontal to the right
public double getDirection()

// calculates and returns the perimeter of the rectangle
public double getPerimeter()

// Calculates and returns the area of the rectangle.
public double getArea()

// Draws String str at the specified x and y coordinates
public void drawString(String str, double x, double y)

// Draws a new instance of a Rectangle object with the left and right
// edges of the rectangle at x and x + width. The top and bottom edges
// are at y and y + height.
public void draw()

Assignment:

1. Implement a Rectangle class with the following properties.

a. A default Rectangle object is specified in the constructor with the x, y, width and height set
to 0.

b. A Rectangle object is specified in the constructor with the left and right edges of the rectangle
at x and x + width. The top and bottom edges are at y and y + height.

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.3 (Page 4)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

c. A Rectangle object is specified that is a copy of an existing Rectangle.

d. Methods getXPos, getYPos, getWidth, and getHeight, return the x, y, height and width
of the Rectangle respectively.

e. A method, getDirection, returns the current orientation of the DrawingTool.

f. Methods setXPos, setYPos, setWidth, and setHeight, sets the x, y, height and width of
the Rectangle respectively to the value of each methods double parameter.

g. A method setDirection, sets the current orientation of the DrawingTool.

h. A method getPerimeter calculates and returns the perimeter of the Rectangle.

i. A method getArea calculates and returns the area of the Rectangle.

j. A method draw displays a new instance of a Rectangle object.

k. A method drawString displays String at the specified x and y coordinates of the drawing area.

2. The methods draw, drawString, and setDirection make use of existing DrawingTool

methods. Refer to handout, H.A.1.1 – DrawingTool, for details on the DrawingTool methods.

3. Write a testing class with a main method that constructs a Rectangle, rectA, and calls

setDirection, setWidth, and draw for each Rectangle created. It is recommended that the
changes in orientation and width of each successive rectangle in the spiral be calculated using the
getDirection and getWidth methods. For example, if the increment for each turn is given by
turnInc and the decrease in size of rectangle is given by widthDec, then successive calls to the
following:

rectA.setDirection(rectA.getDirection() - turnInc);
rectA.setWidth(rectA.getWidth() - widthDec);
rectA.draw();

would draw each “spoke” of the rectangular spiral:

Construct another Rectangle, rectB that is a copy of the original rectA. Draw the rectangle in the
upper left corner of drawing area. Label the rectangle with its width, height, perimeter and area.

The resulting image would be similar to the one shown below:

APCS - Java, Lesson 7 © ICT 2003, www.ict.org, All Rights Reserved L.A.7.3 (Page 5)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

4. Turn in the source code with the run output attached. It is recommended that the Rectangle class

and the testing class be combined in one source file (RectangleMethods.java).

